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Abstract— This paper studies the mean square stabilization
problem of vector LTI systems over power constrained lossy
channels. The communication channel is with packet dropouts,
additive noises and input power constraints. To overcome
the difficulty of optimally allocating channel resources among
different sub-dynamics, schedulers are designed with time
division multiplexing of channels. An adaptive TDMA (Time
Division Multiple Access) scheduler is proposed first, which
is shown to be able to achieve a larger stabilizability region
than the conventional TDMA scheduler, and is optimal under
some special cases. In particular, for two-dimensional systems,
an optimal scheduler is designed, which provides the necessary
and sufficient condition for mean square stabilization.

I. INTRODUCTION

For ease of installation and maintenance, wireless commu-
nications have potentially wide applications in control sys-
tems. However, due to changes of environments, fading and
additive noises are unavoidable in wireless communications,
which motivate the study on their effect on the stability and
performance of control systems.

Traditionally, fading and additive communication noises
are studied separately. For example, [1], [2] study the stabi-
lization problem of linear systems controlled over power con-
strained AWGN channels. The authors show the existence of
a kind of channel capacities which is related to the unstable
eigenvalues of the linear system, above which there exists
no stabilizing feedback control strategy. This is parallel to
the data-rate theorem in [3], which establishes a critical data
rate for a rate limited communication channel below which
the system cannot be stabilized. Similarly, for pure fading
channels, [4] shows that there exists a mean square capacity
that determines the stabilizability of a system. However, since
fading and additive noises exist simultaneously in wireless
communication systems, it is practical to consider them as a
whole. Previously, we have derived necessary and sufficient
stabilizability conditions for LTI systems controlled over
power constrained fading channels [5]. The strategies derived
there are shown to be optimal for scalar systems. While
for vector systems, generally there exists a gap between the
necessary condition and the sufficient condition.

For vector systems, the difficulty is how to optimally allo-
cate channel resources among different sub-systems. Similar
problems are also encountered in networked control over
rate limited communication channels. It is shown in [6] that
the main difficulty in stabilizing a multi-dimensional system
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over random digital channels consists of allocating optimally
bits number to each unstable sub-system. They introduce
a rate allocation vector which determines the fraction of
rates that is allocated to each sub-system to achieve the
stabilization. Generally, the number of bits allocated to
each state variable is proportional to the magnitude of the
corresponding unstable mode [7]. The stabilizability region
achieved by this method is a convex hull, which can be
conservative even for two-dimensional systems. This rate
vector allocation scheme for digital channels essentially
implies a FDMA (Frequency Division Multiple Access) strat-
egy for applications to analogy channels. However, FDMA
schemes are difficult to design and analyze. In this paper, we
propose an adaptive TDMA communication protocol, which
achieves a similar effect as the rate allocation vector used
in [6] [7]. Moreover, we show that the optimal allocation is
time-varying, which contrasts with the constant rate vector
allocation. Based on this analysis, an optimal scheduler is
proposed for two-dimensional systems, which provides the
necessary and sufficient stabilizability condition.

This paper is organized as follows: in Section II, the
problem is formulated and preliminaries are provided. Sec-
tion III illustrates the adaptive TDMA scheduler design and
the corresponding stability analysis. An optimal scheduler
is proposed and analyzed for two-dimensional systems in
Section IV. This paper ends with some concluding remarks
in Section V.

II. PROBLEM FORMULATIONS AND PRELIMINARIES

This paper studies the following single-input discrete-time
linear system

xt+1 = Axt +But (1)

where x ∈ RN is the system state, u ∈ R is the control
input and (A,B) is stabilizable. Without loss of generality,
we can assume that A is in the real Jordan canonical form
and all its eigenvalues are either on or outside of the unit
disk. Let λ1, . . . , λd be the distinct unstable eigenvalues (if
λi is complex, we exclude its complex conjugates λ∗i from
this list) of A with |λ1| ≥ |λ2| ≥ . . . ≥ |λd|. Let mi be
the algebraic multiplicity of each λi. Then A has the block
diagonal structure A = diag(J1, . . . , Jd) ∈ RN×N , where
the block Ji ∈ Rµi×µi with

µi =

{
mi if λi ∈ R
2mi otherwise

The initial value x0 = [x1,0, . . . , xN,0] is randomly generated
from a Gaussian distribution with zero mean and bounded
covariance matrix Σx0

> 0. The system state xt is observed
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by a sensor and then encoded and transmitted to the con-
troller through a power constrained lossy channel with

rt = γtst + nt (2)

where st denotes the channel input; rt represents the channel
output; {γt} models the i.i.d. packet drop process with
Bernoulli distribution Pr(γt = 0) = ε, Pr(γt = 1) = 1 − ε
and {nt} is an additive white Gaussian communication noise
with zero-mean and bounded variance σ2

n. The channel
input st must satisfy an average power constraint, i.e.,
E
{
s2t
}
≤ P . We also assume that x0, γ0, n0, γ1, n1, . . .

are independent. In the paper, it is assumed that after each
transmission, the instantaneous value of γt is known to the
decoder, which is reasonable for slow-varying channels with
channel estimation [8]. Besides, there exists a feedback link
that communicates rt−1 and γt−1 from the channel output
to the channel input. The feedback configuration among
the plant, the sensor and the controller, and the channel
encoder/decoder structure is depicted in Fig 1.

Fig. 1: Network control structure over a power constrained
lossy channel

In this paper, we try to find conditions on the channel (2)
such that there exists a pair of encoder/decoder {ft}, {ht}
that can mean square stabilize the LTI dynamics (1), i.e., to
render limt→∞E {xtx′t} = 0. If we define δ =

σ2
n

σ2
n+P

, the
necessary condition and the sufficient condition to ensure
mean square stabilizability in [5] are first recalled in the
lemma below.

Lemma 1: There exists an encoder/decoder pair
{ft}, {ht}, such that the LTI dynamics (1) can be
stabilized over the communication channel (2) in mean
square sense if

d∑
i=1

µiln|λi| < −
1

2
ln(ε+ (1− ε)δ) (3)

and only if (ln|λ1|, . . . , ln|λd|) ∈ Rd satisfy that for all vi ∈
{0, . . . ,mi} and i ∈ U = {1, . . . , d}∑

i∈U
aiviln|λi| < −

v

2
ln(ε+ (1− ε)δ 1

v ) (4)

where v =
∑
i∈U aivi, and ai = 1 if λi ∈ R, and ai = 2

otherwise.
The sufficient condition (3) is achieved by using a TDMA

strategy, where each sub-dynamics is allocated a fixed period
to use the channel. In the following section, we propose an

adaptive TDMA communication scheme for N -dimensional
systems which achieves a less conservative result than (3).

III. ADAPTIVE TDMA SCHEME FOR N -DIMENSIONAL
SYSTEMS

Before stating the communication scheme, the following
lemma is listed first, which is instrumental to the protocol
design.

Lemma 2 ( [9]): If there exists an estimation scheme x̂t
for the initial system state x0, such that the estimation error
et = x̂t − x0 = [e1,t, e2,t, . . . , eN,t] satisfies the following
property,

E {et} = 0 (5)
lim
t→∞

AtE {ete′t} (A′)t = 0 (6)

then the system (1) can be mean square stabilized by the
controller

ut = K

(
Atx̂t +

t∑
i=1

At−iBui−1

)
(7)

with K being selected such that A+BK is stable.

A. Encoder and Decoder Design

In view of Lemma 2, we only need to design a commu-
nication protocol to guarantee (5) and (6). The transmission
protocol used in this paper contains three parts: the encoder,
the decoder and the scheduler. The structure of the transmis-
sion protocol is illustrated in Fig. 2.

Fig. 2: Transmission protocol configuration

The i-th encoder/decoder pair is designed to transmit the
information corresponding to xi,0. The controller maintains
an array x̂t = [x̂1,t, x̂2,t, . . . , x̂N,t] that represents the most
recent estimation of x0, which is set to 0 for t = 0. When
the information about xi,0 is transmitted, only x̂i,t is updated
at the controller side. There is one scheduler that determines
which encoder/decoder pair should use the channel. Denote
tik the time when the i-th encoder/decoder pair is scheduled
to use the channel for its k-th transmission. tik is thus updated
only at the scheduled time.

The encoder i is designed as

si,ti0 =

√
P

σ2
xi,0

xi,0

si,tik =

√√√√ P

σ2
e
i,ti
k−1

(
x̂i,tik−1

− xi,0
)
, k ≥ 1

(8)

where x̂i,tik−1
denotes the estimate of xi,0 at the time tik−1.

This estimate is available to the encoder since the encoder
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knows the decoding algorithm and there is a feedback link
from the decoder to the encoder that transmits necessary
information for decoding.

The decoder i satisfies

x̂i,ti0 =

√
σ2
xi,0

P
ri,ti0

x̂i,tik = x̂i,tik−1
−

E
{
ri,tikei,tik−1

|γtik
}

E
{
r2
i,tik
|γtik

} ri,tik , k ≥ 1

(9)

with σ2
ei,t representing the variance of ei,t.

Similar to the analysis in [5], we can show that using
the encoder (8) and the decoder (9), (5) always holds and
E
{
e2i,t
}

= E
{
δn

t
i

}
E
{
e2
i,ti0

}
with nti denoting the total

number of successful packet receptions by the i-th decoder
by time t, which is determined both by the scheduler and
the stochastic packet drop process. Thus to guarantee (6), we
should design schedulers to ensure limt→∞ E

{
λ2ti δ

nti

}
= 0

for all i = 1, . . . , N . In the following, an adaptive TDMA
scheduler is designed and its stability property is proved.

B. Scheduler Design

Different from the fixed period transmission in the TDMA
scheduler used in [5], the adaptive TDMA scheduler used
here is adapted to the packet drop process. It switches
the transmission only if the packet is received for certain
times. By using information of the packet drop process, we
may expect to achieve a larger stabilizability region. The
scheduler is described as below.

Algorithm 1: Adaptive TDMA Scheduler for N -
dimensional Systems

• The first encoder/decoder pair is scheduled to use
the channel, until the transmissions succeed for n1
times.

• The second encoder/decoder pair is scheduled to
use the channel, until the transmissions succeed for
n2 times.

• . . .
• The N -th encoder/decoder pair is scheduled to use

the channel, until the transmissions succeed for nN
times.

• Repeat.

The transmission scheduling is depicted in Fig. 3, in which
T ik denotes the time period for the i-th encoder/decoder
pair to achieve ni successful transmissions during the k-th
round; T tk denotes the total time period to complete the k-th
round transmission, i.e. T tk =

∑N
i=1 T

i
k. It is clear that T ik is

independent with T jk , and T ti is independent with T tj for any
i, j, k.

Remark 1: Here we assume the encoder and the decoder
are both aware of the scheduling algorithm. Since the switch-
ing among transmissions in our designed schedulers relies
on the packet drop process, and there exists a feedback

time

T t
1 T t

2

T1
1 T2

1

· · ·
TN1 T1

2 T2
2

· · ·
TN2

· · ·

Fig. 3: Transmissions with the Adaptive TDMA scheduler

channel that acknowledges the packet drop, the encoder and
the decoder are both aware of when to switch transmissions
and what is the encoder/decoder pair that corresponds to
the current channel use. Thus we do not need to consider
the coordination problem between the encoders and the
decoders.

C. Stability Results

Theorem 1: If there exist αi > 0 with
∑d
i=1 αi = 1, such

that
ln |λi| < −

1

2
ln
(
ε+ (1− ε)δ

αi
µi

)
(10)

for all i = 1, . . . , d, the LTI dynamics (1) can be stabilized
over the communication channel (2) in mean square sense
with the encoder (8), the decoder (9) and the scheduler
described in Algorithm 1.

Proof: Here we only consider the case that λ1, . . . , λd
are real and mi = 1. We can easily extend the analysis to
other cases by following a similar line of arguments as in [9]
and the Section 2.3.1.2 in [10]. Since the erasure process is
i.i.d., {T ik} is i.i.d. for all i = 1, 2, . . . , N with the probability
distribution

Pr(T ik = ni + l) =

(
ni + l − 1

ni − 1

)
(1− ε)niεl (11)

with l = 0, 1, 2, . . .. In the light of the binomial theorem, we
have that

E
{
λ
2T jk
i

}
=

∞∑
l=0

λ
2(nj+l)
i

(
nj + l − 1

nj − 1

)
(1− ε)nj εl

= λ
2nj
i

(1− ε)nj
(1− ελ2i )nj

(12)

Since T jk is independent with T ik for all i, j ∈ {1, 2, . . . , N},
we have

E
{
λ
2(

∑N
j=1 T

j
k )

i δni
}

=

N∏
j=1

E
{
λ
2T jk
i

}
δni

=

(
λ2i

(1− ε)
(1− ελ2i )

δ
ni∑N
j=1

nj

)∑N
j=1 nj

(13)

Besides, if we define T t0 = 0, we have

E

{ ∞∑
t=1

λ2ti δ
nti

}
≤
∞∑
k=0

E


T tk+1−1∑
j=1

λ
2(T t0+...+T

t
k+j)

i δkni


=

∞∑
k=0

E

{
λ
2T tk+1

i − λ2i
λ2i − 1

}
E
{
λ
2T t1
i δni

}k
=

∞∑
k=0

E

{
λ
2T tk+1

i − λ2i
λ2i − 1

}(
λ2i

(1− ε)
(1− ελ2i )

δ
ni∑N
j=1

nj

)k(∑N
j=1 nj)
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In view of (12), we know that E

{
λ
2Ttk+1
i −λ2

i

λ2
i−1

}
is bounded.

Moreover, if (10) holds, we can always find njs such that(
λ2i

(1− ε)
(1− ελ2i )

δ
ni∑N
j=1

nj

)∑N
j=1 nj

< 1

for all i = 1, 2, . . . , N , which further implies
E
{∑∞

t=1 λ
2t
i δ

nti

}
< ∞. Thus limt→ E

{
λ2ti δ

nti

}
= 0

for all i = 1, . . . , N . In the light of Lemma 2, the result can
be proved.

Remark 2: The sufficiency (3) achieved with the TDMA
scheduler can be alternatively formulated as follows: if there
exist αi > 0 and

∑d
i=1 αi = 1, such that

ln |λi| < −
αi
2µi

ln(ε+ (1− ε)δ)

for all i = 1, 2, . . . , d, the system (1) can be mean square
stabilized. In view of the Jensen’s inequality, we have

− αi
2µi

ln(ε+ (1− ε)δ) < −1

2
ln
(
ε+ (1− ε)δ

αi
µi

)
thus any λi that satisfies (3) must also satisfy (10) with the
same αi, which implies that the adaptive TDMA scheduler
achieves a larger stabilizability region than the TDMA sched-
uler.

When all the strictly unstable eigenvalues have the same
magnitude, we can show that the sufficient condition (10)
coincides with the necessary condition (4). The result is given
in the following corollary.

Corollary 1: If ∃du ≤ d, such that |λ1| = . . . = |λdu | =
λ > 1 and |λdu+1| = . . . = |λd| = 1, there exists an
encoder/decoder pair {ft}, {ht}, such that the LTI dynamic-
s (1) can be stabilized over the communication channel (2)
in mean square sense if and only if

lnλ < −1

2
ln
(
ε+ (1− ε)δ

1
µ1+...+µdu

)
When the strictly unstable eigenvalues are with distinct

magnitudes, generally there exists a gap between the neces-
sary stabilizability condition (4) and the sufficient stabiliz-
ability condition (10) that can be achieved by the adaptive
TDMA scheduler. In the following, we propose an optimal
scheduler design for two-dimensional systems, specifically
with distinct magnitudes, that can stabilize all the eigenvalue
pairs in the necessary stabilizability region.

IV. OPTIMAL SCHEDULER FOR TWO-DIMENSIONAL
SYSTEMS

Since when the eigenvalues are with equal magnitudes,
the adaptive TDMA scheduler is optimal. Without loss of
generality, in this section we assume that A =

[
λ1 0
0 λ2

]
with

λ1, λ2 ∈ R and |λ1| > |λ2| > 1 and propose an optimal
scheduler design for such systems. In view of Lemma 2 and
the encoder/decoder (8) (9), we should design schedulers to
ensure that under stochastic packet dropouts

lim
t→∞

E
{
λ2t1 δ

nt1

}
= 0, lim

t→∞
E
{
λ2t2 δ

nt2

}
= 0

or equivalently

lim
t→∞

E
{
λ2t1 δ

nt1 + λ2t2 δ
nt2

}
= 0 (14)

Thus the scheduler should be designed to optimally allocate
nt1 and nt2 to minimize λ2t1 δ

nt1 + λ2t2 δ
nt2 . The optimal

allocation of nt1 and nt2 should satisfy that

nt2 = nt1 + 2t
ln |λ1| − ln |λ2|

ln δ
(15)

which is obtained by requiring λ2t1 δ
nt1 = λ2t2 δ

nt2 . In the
following, we propose a scheduler design which enforces
nt1 and nt2 to satisfy (15) when t is sufficiently large in the
presence of stochastic packet dropouts. Thus we may expect
that the scheduler is optimal.

A. Optimal Scheduler Design
Algorithm 2: Optimal Scheduler for Two-dimensional
Systems

• In the k-th round, the first encoder/decoder pair is
scheduled to use the channel until the transmissions
succeed for n1 times. Denote the time period to
achieve this object as T 1

k .
• – If

n1 + 2T 1
k

ln |λ1| − ln |λ2|
ln δ

> 0 (16)

the second encoder/decoder pair is scheduled
to use the channel until the transmissions suc-
ceed for n2,k times with

n2,k > n1+2(T 1
k +T 2

k )
ln |λ1| − ln |λ2|

ln δ
(17)

where T 2
k denotes the time period of achieving

this object.
– Otherwise, set T 2

k = 0 and do not conduct any
transmissions.

• Repeat.

Thus T 1
k has the probability distribution (11) with i =

1. Let T tk denote the total time used to complete the k-th
round transmission, i.e., T tk = T 1

k +T 2
k . It is clear that T ti is

independent with T tj and n2,i is independent with n2,j for
any i, j. The switching condition (16) implies that if

T 1
k ≤ T c :=

n1 ln δ

2 (ln |λ2| − ln |λ1|)
after finishing transmitting the estimate corresponding to
x1,0, the estimate corresponding to x2,0 can be transmitted.
Otherwise, the algorithm continues to use the channel to
transmit the estimate corresponding to x1,0. Besides, it is
clear that T 2

k is a stopping time when T 1
k ≤ T c. Moreover T 2

k

is bounded when T 1
k ≤ T c due to the fact that |λ2| < |λ1|.

B. Stability Results

Theorem 2: Suppose A =
[
λ1 0
0 λ2

]
with λ1, λ2 ∈ R and

|λ1| > |λ2| > 1, the LTI dynamics (1) is mean square
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stabilizable over the power constrained lossy channel (2) if
and only if

ln |λ1| < −
1

2
ln ((1− ε)δ + ε) (18)

ln |λ1|+ ln |λ2| < − ln
(

(1− ε)
√
δ + ε

)
(19)

The following lemma is important in the proof of Theo-
rem 2, which is stated first and its proof can be found in the
appendix.

Lemma 3: If (18) and (19) are satisfied, with the schedul-
ing scheme described in Algorithm 2, we have that

E{λ2T
t
1

1 δn1} < 1, E
{
λ
2T t1
2 δn2,1

}
< 1 (20)

Remark 3: Intuitively, Lemma 3 implies that with the
designed scheduling Algorithm 2, the average expanding
factor corresponding to the eigenvalues λ1 and λ2 during
one round transmission is smaller than one. In the proof of
Theorem 2, we will show that (20) is sufficient to ensure
mean square stability.
Proof of Theorem 2: Here only the sufficiency is proved. The
necessity follows directly from (4). Define T t0 = 0, we have

E

{ ∞∑
t=1

(λ2t1 δ
nt1 + λ2t2 δ

nt2)

}

≤
∞∑
k=1

E


T tk+1−1∑
j=1

(λ
T t0+...+T

t
k+j

1 δkn1 + λ
T t0+...+T

t
k+j

2 δn
t
2)


Since

∞∑
k=1

E


T tk+1−1∑
j=1

λ
T t0+···+T

t
k+j

1 δkn1


=

∞∑
k=1

E

{
λ
T tk+1

1 − λ21
λ21 − 1

}
E
{
λ
T t1
1 δn1

}k
(21)

and

∞∑
k=0

E


T tk+1∑
j=1

λ
T t0+...+T

t
k+j

2 δn
t
2


≤
∞∑
k=0

E
{
λ
T t1
2 δn2,1

}k
E

{
λ
T tk+1

2 − λ22
λ22 − 1

}
(22)

In view of (20), we know that (21) and (22) are bound-
ed. Thus E

{∑∞
t=1(λ2t1 δ

nt1 + λ2t2 δ
nt2)
}

is bounded, which

further implies that limt→∞ E
{
λ2t1 δ

nt1 + λ2t2 δ
nt2

}
= 0. The

proof of the sufficiency is complete. �
Remark 4: For N -dimensional systems, generally we

want to minimize
∑N
i=1 λ

2t
i δ

nti subject to the constraint that∑N
i=1 n

t
i = n with n being the total number of successful

transmissions by time t for a specific realization of the packet
drop process. The optimal choice of nti should be

nt∗i =
1

N

(
n+ 2t

∑N
i=1 ln |λi|

ln δ

)
− 2t

ln |λi|
ln δ

(23)

Necessity

and Sufficiency with Optimal Scheduler

Sufficiency with

Adaptive TDMA Scheduler

Sufficiency with

TDMA Scheduler

λ1 = λ2

0.00 0.02 0.04 0.06 0.08 0.10 0.12

0.00

0.02

0.04

0.06

0.08

0.10

0.12

ln|λ1|

ln
|λ
2
|

Fig. 4: Comparisons of Stabilizability Conditions

However nt∗i is determined by n, which is not causally
available when transmitting xi,0 at any time k < t. When
N = 2, we can achieve the desired optimal allocation by
fixing nt1 = n1 and requiring nt2 to achieve (17). However,
this method is not applicable to the case of N ≥ 3.

C. An Example

Suppose the parameters in the communication channel (2)
are P = 1, σ2

n = 1, ε = 0.7, the regions for (ln |λ1|, ln |λ2|)
indicated by the necessity (4), the sufficiency (3) with the
TDMA scheduler, the sufficiency (10) with the adaptive
TDMA scheduler and the sufficiency (18) (19) with the
optimal scheduler are plotted in Fig. 4. It is clear from
the figure that the optimal scheduler proposed in Algorithm
2 covers the whole necessary stabilizability region, which
is larger than the regions that can be achieved by the
adaptive and conventional TDMA schedulers. Besides, as
noted in Remark 2, the adaptive TDMA scheduler achieves
a larger stabilizability region than that the conventional TD-
MA scheduler. Moreover, we can observe that the adaptive
TDMA scheduler is optimal at three points, i.e., |λ1| = |λ2|,
|λ1| = 1 and |λ2| = 1. This is consistent with Corollary 1.

V. CONCLUSIONS

This paper studies the mean square stabilizability problem
of vector LTI systems over power constrained lossy channels.
Two transmission schedulers are proposed and their stabiliz-
ability regions are analyzed. It is shown that the proposed
schedulers achieve larger stabilizability regions than the one
proposed in our previous work. Further work will be devoted
to the study of the optimal transmission protocol for high-
dimensional systems, and also for the case of general power
constrained fading channels.

APPENDIX

Lemma 4: If (19) holds, the equation

θφ− ln[(1− ε)exp (θ) + ε] = 2 ln |λ1| (24)
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with φ = 2(ln |λ1| − ln |λ2|)/(ln δ) < 0 admits a unique
solution θ with 0 > θ > 1

2 ln δ.
Proof: Define the function f(θ) = θφ − ln[(1 −

ε)exp (θ) + ε] − 2 ln |λ1|. Since f is decreasing in θ, and
f(0) = −2 ln |λ1| < 0, f( 1

2 ln δ) = − ln |λ1λ2|[(1− ε)
√
δ+

ε]. If (19) holds, we have f( 1
2 ln δ) > 0, which implies

that (24) admits a unique solution and 0 > θ > 1
2 ln δ.

Proof of Lemma 3: In view of the conditional expectation,
at the time t = T 1

1 + T 2
1 , we have

E{λ2(T
1
1 +T

2
1 )

1 δn
t
1 + λ

2(T 1
1 +T

2
1 )

2 δn
t
2}

= E{E{λ2(T
1
1 +T

2
1 )

1 δn
t
1 + λ

2(T 1
1 +T

2
1 )

2 δn
t
2 |T 1

1 ≤ T c}}

+ E{E{λ2(T
1
1 +T

2
1 )

1 δn
t
1 + λ

2(T 1
1 +T

2
1 )

2 δn
t
2 |T 1

1 > T c}}
(a)

≤ E{E{2λ2(T
1
1 +T

2
1 )

1 δn1 |T 1
1 ≤ T c}}

+ E{E{λ2T
1
1

1 δn1 + λ
2T 1

1
2 |T 1

1 > T c}} (25)

where (a) follows from (17).
Suppose T 1

1 is known and T 1
1 ≤ T c, with the definition

of St =
∑T 1

1 +t

i=T 1
1 +1

γi and Yt = exp (θSt + bt), we have
E {Yt+1|Yt, Yt−1, . . . , Y1} = YtE {exp (θγt+1 + b)}. Define
b = − ln[(1− ε)exp (θ) + ε], we have E{exp(θγt+1 + b)} =
1. Thus the stochastic process {Yt} is a martingale.
Since T 2

1 is a bounded stopping time, we can use
the optional stopping theorem [11] on Yt, which yield-
s E

{
YT 2

1

}
= E {Y1} = 1. However, by our stop-

ping condition, we know that ST 2
1

= n2 = n1 +

2(T 1
1 + T 2

1 ) × ln |λ1|−ln |λ2|
ln δ + c with c ≥ 0. Therefore,

E
{

exp
(
θn1 + θφ(T 1

1 + T 2
1 ) + θc+ bT 2

1

)
|T 1

1 ≤ T c
}

= 1,
which implies that E

{
exp

(
(θφ+ b)T 2

1

)
|T 1

1 ≤ T c
}

=

E
{
λ
2T 2

1
1 |T 1

1 ≤ T c
}

= exp
(
−θn1 − θφT 1

1 − θc
)
.

In view of the above result and (25), we have

E
{
λ
2(T 1

1 +T
2
1 )

1 δn
t
1 + λ

2(T 1
1 +T

2
1 )

2 δn
t
2

}
≤ E{E

{
λ
2T 1

1
1 δn1 + Ω|T 1

1 > T c
}
}

+ E
{

2λ
2T 1

1
1 exp

(
−θn1 − θφT 1

1 − θc
)
δn1

}
(26)

with Ω := λ
2T 1

1
2 − δn12λ

2T 1
1

1 exp
(
−θn1 − θφT 1

1 − θc
)
.

In the following, we will show that when T 1
1 > T c,

Ω < 0. We only need to show that exp
(
2T 1

1 ln |λ2|
)
<

exp(n1 ln δ+2T 1
1 ln |λ1|+ln 2−θn1−θφT 1

1 −θc) or equiva-
lently T 1

1 (2 ln |λ1|−θφ−2 ln |λ2|) > θn1+θc−n1 ln δ−ln 2.
If (19) holds, in view of Lemma 4 we have θ > ln δ, thus
1− θ

ln δ > 0, which means 2(ln |λ1|−ln |λ2|)−θφ > 0. Since

T 1
1 > T c = −n1

φ , we have T 1
1 (2 ln |λ1| − θφ− 2 ln |λ2|)

(b)
>

θn1 +θc−n1 ln δ− ln 2, where (b) holds from the definition
of φ. Thus when T 1

1 > T c, Ω < 0. From (26), we have

E
{
λ
2(T 1

1 +T
2
1 )

1 δn
t
1 + λ

2(T 1
1 +T

2
1 )

2 δn
t
2

}
≤ E

{
2λ

2T 1
1

1 exp
(
−θn1 − θφT 1

1 − θc
)
δn1

}
+ E

{
λ
2T 1

1
1 δn1

}
(27)

For the first term in (27), we have

E
{

2λ
2T 1

1
1 exp

(
−θn1 − θφT 1

1 − θc
)
δn1

}
= 2δn1exp (−θn1 − θc)×

∞∑
n1

λ
2T 1

1
1 exp

(
−θφT 1

1

)
Pr(T 1

1 )

= 2exp (−θc)
(
δexp (−θ)× λ21exp (−θφ) (1− ε)

1− λ21exp (−θφ) ε

)n1

In view of (24), we have exp (−θφ) = 1
λ2
1[(1−ε)exp(θ)+ε]

.

Therefore, δexp (−θ)× λ2
1exp(−θφ)(1−ε)
1−λ2

1exp(−θφ)ε
= δexp (−2θ). Be-

sides for the second term in (27), we have E
{
λ
2T 1

1
1 δn1

}
=∑∞

n1
λ
2T 1

1
1 δn1Pr(T 1

1 ) =
(
λ2
1δ(1−ε)
1−λ2

1ε

)n1

. Thus

E
{
λ
2(T 1

1 +T
2
1 )

1 δn
t
1 + λ

2(T 1
1 +T

2
1 )

2 δn
t
2

}
≤ 2exp (−θc) (δexp (−2θ))n1 +

(
λ21δ(1− ε)

1− λ21ε

)n1

If (18) holds, we have that λ2
1δ(1−ε)
1−λ2

1ε
< 1. If (19) hold-

s, in view of Lemma 4, we have that δexp(−2θ) <
1. Thus by appropriately selecting n1, we can guarantee
E{λ2(T

1
1 +T

2
1 )

1 δn1 + λ
2(T 1

1 +T
2
1 )

2 δn2,1} < 1, which further
ensures E{λ2T

t
1

1 δn1} < 1 and E
{
λ
2T t1
2 δn2,1

}
< 1. The proof

is complete. �
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