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Abstract: This paper studies the secure state estimation problem of linear time-varying Gaussian processes in the presence of
stochastic noises based on measurements from a set of sensors, a subset of which can be compromised by an attacker. The
measurement of the compromised sensors can be arbitrarily manipulated by the attacker. We first show that in the absence of
attacks, the Kalman filter can be decomposed into m local estimators and the Kalman estimate can be obtained by summing up
the local estimates. We further show a least square interpretation to the fusion process and based on which, a convex optimization
based secure state estimation scheme is proposed. The secure state estimation algorithm guarantees that when all the sensors
are benign, the secure estimate coincides with the Kalman estimate. When less than half of the sensors are compromised, the
secure state estimation scheme can still generate an estimate with bounded estimation error. Moreover, we demonstrate how to
formulate the convex optimization problem to a conic programming problem to facilitate the application of the proposed secure
state estimation algorithm in embedded systems. In the end, numerical simulations are conducted to verify the effectiveness of
the proposed algorithm.
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1 Introduction

Networked embedded sensors are ubiquitous in monitor-
ing dynamical systems due to their low cost and easy of in-
stallation. However, they are also vulnerable to attackers ow-
ing to their limited capacity and sparsely spatial deployment.
Attackers might get access to sensors and arbitrary manipu-
late sensor measurements, or break the communication links
between sensors and system operators to inject faked infor-
mation. Therefore, the secure state estimation problem of
linear dynamical systems under sparse sensor attacks has
been extensively studied in the past few years. In the prob-
lem setting, it is usually assumed that a group of sensors are
deployed to monitor the systems dynamics, of which a subset
of sensors might be compromised and their measurements
can be arbitrarily tampered. The problem of interests is to
determine the conditions under which the system states can
be reliably estimated and design secure estimators to gener-
ate reliable estimates.

When the linear dynamical system is free of process and
measurement noises, the secure state estimation problem is
studied in [1–3]. It is shown that when the number of com-
promised sensors is no larger than the maximal tolerable
bound, which is a function of system matrices (A,C), the
attacks can always be detected and isolated, and the sys-
tem state can always be exactly recovered. Moreover, effi-
cient algorithms using convex relaxation and even-triggered
approach are proposed respectively to estimate the system
state despite attacks in [2, 3]. When there exist process or
measurement noises, the secure state estimation problem is
further complicated by the fact that we have to distinguish
between the noises and the attacks injected by an adversary.
Two kinds of noises are considers in previous studies: 1)
bounded nonstochastic noises and 2) stochastic noises. In
the consideration of bounded noises, [4] presents an l0 -

based state estimator that can be formulated as a mixed-
integer linear program and its convex relaxation based on the
l1 norm. For both state estimators, analytic bounds on the
state-estimation errors caused by the presence of noise are
analyzed. [5] further proposes Satisfiability Modulo Theory
based techniques to exploit the geometric structure of the
secure state estimation problem to efficiently reason about
inconsistency of sensor measurements and improve the run-
time performance. In the presence of Gaussian stochastic
noises, [6] proposes state estimator which involves Kalman
filters operating over subsets of sensors to search for a sensor
subset which is reliable for state estimation. To further im-
prove the subset searching time, the authors propose Satisfi-
ability Modulo Theory-based techniques to exploit the com-
binatorial nature of searching over sensor subsets. [7, 8] pro-
pose convex optimization based approach to merge estimates
of local estimators, which use only the measurement from a
single sensor, to generate a secure state estimate. The pro-
posed estimator coincides with the Kalman estimator with
certain probability when all sensors are benign and is stable
when less than half of the sensors are compromised. How-
ever, the above mentioned work on secure state estimation
in the presence of sparse sensor attacks only consider linear
time-invariant systems.

The main difference between the this paper and our pre-
vious work [7, 8] is that we consider a linear time varying
system instead of an LTI system. This is motivated by our
research on sensor fusion for autonomous vehicle, where
the sensors have different sampling frequency and are not
synchronized. We believe that this formulation has many
real world applications beyond autonomous driving vehicles.
The main contributions are as follows: 1) this paper pro-
poses a decomposition method for the time-varying Kalman
filter; 2) a convex optimization based secure state estimation



scheme is proposed, which guarantees that when all the sen-
sors are benign, the secure estimate can generate the Kalman
estimate, when less than half of the sensors are under attack,
the secure estimator can still generate a reliable estimate; 3)
the secure state estimation algorithm is further formulated
as a conic programming problem to facilitate its applications
on embedded systems.

The paper is organized as follows: Section 2 is the prob-
lem formulation. The Kalman filter decomposition and the
least square interpretation are given in Section 3. Section 4
introduces the secure information fusion scheme. The re-
formulation to a conic programming problem is provided in
Section 5. The numerical simulations are given in Section 6
and this paper ends with some concluding remarks in Sec-
tion 7.

Notations: R and Rn denote sets of real numbers and n-
dimensional real vectors, respectively. 1 represents a vec-
tor with all elements to be 1. I denotes the identity matrix.
A′, A−1 denote the transpose and inverse of matrix A, re-
spectively. A � 0(A � 0) means that the matrix A is posi-
tive definite (positive semi-definite). v > 0 means that every
element of the vector v is greater than or equal to zero. E{·}
denotes the expectation operator.

2 Problem Formulation

This paper studies the following linear time-varying pro-
cess

x(k + 1) = A(k)x(k) + w(k), (1)

where x(k) ∈ Rn is the state and w(k) ∈ Rn is the process
noise. We assume that the initial condition satisfies x(0) ∼
N (0,Σ) with Σ � 0; the process noise satisfies w(k) ∼
N (0, Q(k)) and w(k1) and w(k2) are independent for any
k1 6= k2. m sensors are deployed to measure the process
state. The measurement output at each sensor is

yi(k) = Ci(k)x(k) + vi(k) + ai(k), i = 1, . . . ,m, (2)

where yi(k) ∈ R is the sensor measurement; vi(k) ∈ R is
the stochastic measurement noise and ai(k) ∈ R is the deter-
ministic bias injected by the attacker. (2) can be equivalently
formulated as

y(k) = C(k)x(k) + v(k) + a(k), (3)

where y, C, v, a are vectors/matrices formed by stacking
yi, Ci, vi and ai, respectively. We further assumed that
v(k) ∼ N (0, R(k)); v(k1) and v(k2) are independent for
any k1 6= k2 and w(k1), v(k2), x(0) are independent for any
k1, k2.

Remark 1. The dynamics (1), (3) can model the scenario
that a continuous-time process is monitored by multiple
sensors with asynchronous measurements or transmission
packet losses. Consider the simple case that the continuous-
time process is a linear system with ẋ(t) = Ax(t), yi(t) =
Cix(t), i = 1, . . . ,m. Then A(k) = exp(Aτ), where τ
is the time interval between two consecutive measurements.
Moreover, C(k) = [C̃ ′i, . . . , C̃

′
m]′ with C̃i either be Ci if the

i-th sensor’s measurement is accessible at time instance k or
0 otherwise.

Due to resource constraints of attackers, we assume that at
most p out of m sensors can be compromised with arbitrary
ai. We try to propose a secure estimation scheme to estimate
the system state despite attacks. In the following section, we
show that when all the sensors are benign, the Kalman esti-
mate can be obtained by merging estimates generated from
m local estimators, which only use the measurement from
a single sensor. Based on this result, we further propose a
secure state estimation scheme in Section 4.

3 Kalman Filter Decomposition Using Local Esti-
mate

If all sensors are benign, i.e., a(k) = 0 for all k, the opti-
mal state estimator is the Kalman filter

x̂(k) = x̂(k|k − 1) +K(k)(y(k)− C(k)x̂(k|k − 1)), (4)
P (k) = P (k|k − 1)−K(k)C(k)P (k|k − 1)

where

x̂(k + 1|k) = A(k)x̂(k),

P (k + 1|k) = A(k)P (k)A(k)′ +Q(k),

K(k) = P (k|k − 1)C(k)′(C(k)P (k|k − 1)C(k)′ +R(k))−1

with initial conditions x̂(0| − 1) = 0, P (0| − 1) = Σ.
We further make the following assumptions on the system

parameters and the Kalman filter gain.

Assumption 2. A(k) and A(k) −K(k + 1)C(k + 1)A(k)
are invertible for all k.

Remark 3. If A(k) = exp(Aτ) is from discretizing a lin-
ear continuous-time system, A(k) is automatically invert-
ible. Then the invertibility ofA(k)−K(k+1)C(k+1)A(k)
is equivalent to that of I −K(k)C(k). If Q(k) � 0, R(k) �
0, we can prove that I − K(k)C(k) is invertible. Since
P (k|k − 1) � 0, the invertibility of I −K(k)C(k) is equiv-
alent to that of P (k|k−1)−K(k)C(k)P (k|k−1). Further
from the matrix inversion lemma [9], we know that

P (k|k − 1)−K(k)C(k)P (k|k − 1)

= (P (k|k − 1)−1 + C(k)′R(k)−1C(k))−1,

which implies that I −K(k)C(k) is invertible.

Before giving the design of the local estimator, we need
the following lemma, whose proof is given in Appendix A.

Lemma 4. Under Assumption 2, for any given S ∈ Rn with
1 + Ci(k + 1)A(k)S 6= 0, A(k) − LiCi(k + 1)A(k) is
invertible with Li = 1/(1 + Ci(k + 1)A(k)S)A(k)S.

In view of Lemma 4, let Fi(0) = 1
mI , we can construct

sequences Li(k), k ≥ 1 and Fi(k), k ≥ 1 from

Li(k + 1) =
1

1 + Ci(k + 1)A(k)S(k)
A(k)S(k), (5)

Fi(k + 1) = (A(k)−K(k + 1)C(k + 1)A(k))Fi(k)

× (A(k)− Li(k + 1)Ci(k + 1)A(k))−1, (6)

where

S(k) = Fi(k)−1(A(k)−K(k + 1)C(k + 1)A(k))−1

×Ki(k + 1),



and Ki(k + 1) is the i-th column of K(k + 1).
We can verify from (5) and (6) that Li(k) and Fi(k) sat-

isfy the following relation

Fi(k + 1)(A(k)− Li(k + 1)Ci(k + 1)A(k))

= (A(k)−K(k + 1)C(k + 1)A(k))Fi(k), (7)
Fi(k + 1)Li(k + 1) = Ki(k + 1). (8)

Moreover, Fi(k) has the following property whose proof
is given in Appendix B.

Lemma 5. Fi(k) satisfies
∑m
i=1 Fi(k) = I for all k.

The m local estimators with each one using only the mea-
surement of a single sensor are designed as

x̃i(k) = (A(k − 1)− Li(k)Ci(k)A(k − 1))x̃i(k − 1)

+ Li(k)yi(k), (9)

for i = 1, . . . ,m, where x̃i(k) is the estimate of each local
estimator initialized as x̃i(0) = x̂(0) = K(0)y(0).

We then have that the Kalman estimate x̂(k) can be ob-
tained as a weighted sum of the local estimates x̃i(k) as
proved below.

Theorem 6. Under Assumption 2, with the designed local
estimators (9), we have for all k that

x̂(k) =

m∑
i=1

Fi(k)x̃i(k).

Proof. Left multiply Fi(k) to (9), further from (7) and (8),
we have

Fi(k)x̃i(k) = (A(k−1)−K(k)C(k)A(k−1))Fi(k−1)

× x̃i(k − 1) +Ki(k)yi(k).

Sum up the above equation over i, we have

m∑
i=1

Fi(k)x̃i(k) = (A(k − 1)−K(k)C(k)A(k − 1))

×
m∑
i=1

Fi(k − 1)x̃i(k − 1) +K(k)y(k).

Therefore
∑m
i=1 Fi(k)x̃i(k) has the same dynamics as x̂(k).

Since
∑m
i=1 Fi(0)x̃i(0) = x̂(0), we know that x̂(k) =∑m

i=1 Fi(k)x̃i(k) for all k.

In the following we show that we can also reconstruct
x̂(k) in terms of x̃i(k) from a least square problem, which
enables the introduction of a secure state estimation scheme
in the next section.

3.1 Least Square Interpretation
Let e(k) = [e1(k)′, . . . , em(k)′]′ with ei(k) = x̃i(k) −

x(k). Let Σe(k) = E {e(k)e(k)′}. Then we have

x̃(k) = Hx(k) + e(k), (10)

where x̃(k) = [x̃1(k)′, . . . , x̃m(k)′]′ and H = [I ′, . . . , I ′]′.
Define the following least square problem

min
x̌,ě

1

2
ě′Σe(k)−1ě s.t. x̃(k) = Hx̌+ ě. (11)

Denote the optimal variables to the above least square
problem as x̌∗, ě∗. Then,we have the following theorem.

Theorem 7. The solution to the least square problem (11) is
given by

x̌∗ = x̂(k) = [F1(k), . . . , Fm(k)]x̃(k),

ě∗ = (I −H[F1(k), . . . , Fm(k)])e(k).

Proof. We can verify that the Kalman estimation error co-
variance matrix P (k) and the Kalman filter gain K(k) sat-
isfy the following relation

P (k + 1) = (A(k)−K(k + 1)C(k + 1)A(k))P (k)A(k)′

+ (I −K(k + 1)C(k + 1))Q(k),

K(k + 1)R(k + 1) =(A(k)−K(k + 1)C(k + 1)A(k))

× P (k)A(k)′C(k + 1)′

+ (I −K(k + 1)C(k + 1))

×Q(k)C(k + 1)′.

Then, for any compatible matrix L, we have the following
relation

P (k + 1) =(A(k)−K(k + 1)C(k + 1)A(k))P (k)

× (A(k)− LC(k + 1)A(k))′

+ (I −K(k + 1)C(k + 1))Q(k)

× (I − LC(k + 1))′

+K(k + 1)R(k + 1)L′.

Let [Σe(k)]ij = E {ei(k)ej(k)′}. Then we have that

[Σe(k + 1)]ij =(A(k)− Li(k + 1)Ci(k + 1)A(k))[Σe(k)]ij

× (A(k)− Lj(k + 1)Cj(k + 1)A(k))′

+ (Li(k + 1)Ci(k + 1)− I)Q(k)

× (Lj(k + 1)Cj(k + 1)− I)′

+ rij(k)Li(k + 1)Lj(k + 1)′,

where rij(k) = E {vi(k)vj(k)′}. Therefore we have that

Fi(k + 1)[Σe(k + 1)]ij =

(A(k)−K(k + 1)C(k + 1)A(k))Fi(k)[Σe(k)]ij

× (A(k)− Lj(k + 1)Cj(k + 1)A(k))′

+ (Ki(k + 1)Ci(k + 1)− Fi(k + 1))Q(k)

× (Lj(k + 1)Cj(k + 1)− I)′

+ rij(k)Ki(k + 1)Lj(k + 1)′.

Let S̃j(k) =
∑m
i=1 Fi(k)[Σe(k)]ij , we have that

S̃j(k + 1) =(A(k)−K(k + 1)C(k + 1)A(k))S̃j(k)

× (A(k)− Lj(k + 1)Cj(k + 1)A(k))′

+ (K(k + 1)C(k + 1)− I)Q(k)

× (Lj(k + 1)Cj(k + 1)− I)′

+

m∑
i=1

rij(k)Ki(k + 1)Lj(k + 1)′.

Let Lj(k) = [0, . . . , 0, Lj(k), 0, . . . , 0], we have

S̃j(k + 1) =(A(k)−K(k + 1)C(k + 1)A(k))S̃j(k)

× (A(k)− Lj(k + 1)C(k + 1)A(k))′

+ (K(k + 1)C(k + 1)− I)Q(k)

× (Lj(k + 1)C(k + 1)− I)′

+K(k + 1)R(k + 1)Lj(k + 1)′.



Since S̃j(0) = P (0), we then have S̃j(k) = P (k). There-
fore

[F1(k), . . . , Fm(k)]Σe(k) = P (k)H ′.

Then we have

H ′Σe(k)−1 = P (k)−1[F1(k), . . . , Fm(k)],

H ′Σe(k)−1H
(a)
= P (k)−1,

where (a) follows from Lemma 5. It is known that the least
square problem (11) admits the solutions that

x̌∗ = (H ′Σe(k)−1H)−1H ′Σe(k)−1x̃(k),

which further gives x̌∗ = [F1(k), . . . , Fm(k)]x̃(k). Then we
have that

e∗ = x̃(k)−Hx̌∗

= (I −H[F1(k), . . . , Fm(k)])x̃(k)

(a)
= (I −H[F1(k), . . . , Fm(k)])e(k),

where (a) follows from Lemma 5. The proof is completed.

The above least square interpretation to the Kalman fusion
leads us to the proposition of a convex optimization based
secure state estimation scheme in the next section.

4 Secure Information Fusion

In the presence of attacks, we have

ei(k + 1) =(A(k)− Li(k + 1)Ci(k + 1)A(k))ei(k)

+ (Li(k + 1)Ci(k + 1)− I)w(k)

+ Li(k + 1)vi(k + 1) + Li(k + 1)ai(k + 1).

Define µi(k), νi(k) as follows

µi(k + 1) =(A(k)− Li(k + 1)Ci(k + 1)A(k))µi(k)

+ (Li(k + 1)Ci(k + 1)− I)w(k)

+ Li(k + 1)vi(k + 1), (12)
νi(k + 1) =(A(k)− Li(k + 1)Ci(k + 1)A(k))νi(k)

+ Li(k + 1)ai(k + 1).

Then we have

ei(k) = µi(k) + νi(k).

Therefore, in the presences of attacks, the error e(k) can
be decomposed as the error caused by noise and the error
caused by bias injected by attackers. As a result, we pro-
posed a LASSO [10] based secure fusion scheme as a coun-
terpart to the least square problem (11)

min
x̌s,µ,ν

1

2
µ′Σe(k)−1µ+ γ‖ν‖1 (13)

s.t., x̃(k) = Hx̌s + µ+ ν

where Σe(k) is the same one as used in (11), and its value
can be recursively calculated from (12).

Then following similar line of arguments as in the proof of
Lemma 3 in [7], we have the following lemma characterizing
the solution to the optimization problem (13).

Lemma 8. Let x̌∗s , µ∗, ν∗ be the minimizer to the LASSO
problem (13), and let x̌∗, ě∗ be the minimizer to the least
square problem (11). Then the following statements hold
• the following inequality holds

‖Σe(k)−1µ∗‖∞ ≤ γ.

• if ‖Σe(k)−1ě∗‖∞ < γ, then

x̌∗s = x̌∗, µ∗ = ě∗, ν∗ = 0.

Furthermore, when all the sensors are benign, in view of
Theorem 7 and Lemma 8, we have the following result.

Theorem 9. When all the sensors are benign, if the follow-
ing conditions hold,

‖Σe(k)−1(I −H[F1(k), . . . , Fm(k)])µ(k)‖∞ < γ,

where µ = [µ1, . . . , µm]′, the LASSO estimate x̌∗s gives the
Kalman estimate x̂(t).

The above theorem implies that a larger γ is preferred
in practical applications, since in the absence of attacks, a
larger γ can guarantee that the secure state estimate has a
larger possibility to be equal to the Kalman estimate.

Define the following operator: fi : R×R×· · ·×R→ R,
such that fi(β1, . . . , βm) equals to the i-th smallest element
in the set {β1, . . . , βm}. Assuming that d1, . . . , dm ∈ Rn
are vectors. With slightly abuse of notations, we define
fi(d1, . . . , dm) as a vector where each of its entry is the
i-th smallest element among the corresponding entries in
e1, . . . , em. We further define fi+1/2 = (fi + fi+1)/2.
When the system is under attack, we have the following the-
orem. The proof is similar to the proof of Theorem 3 in [7]
and is omitted here.

Theorem 10. Suppose that p < m
2 sensors are compro-

mised, then the error of the secure state estimate is bounded
by

f(m+1)/2−p(µ1(k), . . . , µm(k))− γ‖Σe(k)‖∞ ≤ x(k)− x̌∗s
≤ f(m+1)/2+p(µ1(k), . . . , µm(k)) + γ‖Σe(k)‖∞.

The above theorem implies that in the presence of attacks,
a smaller γ is preferred in practical applications, since a
smaller γ can guarantee that the bound for the secure esti-
mation error is smaller.

Remark 11. Since observability is not well defined for time-
varying systems, we do not impose any observability require-
ments on applying the algorithm. Indeed, from Theorem 10,
we can observe that the estimation error xk− x̌∗k is bounded
by ‖Σe(k)‖∞, which can be any value and even unbounded
depending on the observability condition.

5 LASSO to Conic Programming

The formulated LASSO problem can be solved via
CVX [11]. However, the secure state estimation algorithm
is usually implemented in resource constrained devices, such
as embedded devices. It is desired to transform (13) to a form
that is convenient for implementation. ECOS is a conic pro-
gramming solver designed for embedded systems [12]. In
the following we propose to formulate LASSO as a conic



programming problem to facilitate the application of pro-
posed secure state estimation scheme in embedded systems
with ECOS.

First of all, since the l1 norm of ν has the following ex-
pression

‖ν‖1 = min
ν1,ν2

1′ν1 + 1′ν2

s.t. ν = ν1 − ν2, ν1 > 0, ν2 > 0,

(13) is equivalent to the following optimization problem

min
x̌s,µ,ν1,ν2,t

1

2
t+ γ1′ν1 + γ1′ν2

s.t., ν1 > 0, ν2 > 0,

x̃(k) = Hx̌s + µ+ ν1 − ν2,

‖Σe(k)−
1
2µ‖22 ≤ t.

The constraint ‖Σe(k)−
1
2µ‖22 ≤ t implies that the vector

[ 1
2 , t, (Σe(k)−

1
2µ)′]′ belongs to the rotated quadratic cone

Q2+n×p
r . The rotated quadratic cone is defined as

Qnr =
{
x ∈ Rn|2x1x2 ≥ x2

3 + . . .+ x2
n, x1, x2 ≥ 0

}
.

Therefore the vector T2+n×p[
1
2 , t, (Σe(k)−

1
2µ)′]′ = [

√
2

4 +
√

2
2 t,

√
2

4 −
√

2
2 t, (Σe(k)−

1
2µ)′]′ belongs to the second order

cone Q2+n×p, where

Tn =


√

2
2

√
2

2√
2

2 −
√

2
2

In−2

 ,
Qn =

{
x ∈ Rn|x1 ≥

√
x2

2 + . . .+ x2
n

}
.

We can then formulate (13) to the following conic pro-
gramming problem

min
x̌s,µ,ν1,ν2,t

1

2
t+ γ1′v1 + γ1′v2

s.t., v1 > 0, v2 > 0,

x̃(k) = Hx̌s + µ+ v1 − v2,[√
2

4
+

√
2

2
t,

√
2

4
−
√

2

2
t, (Σe(k)−

1
2µ)′

]′
∈ Q2+n×p.

6 Numerical Illustrations

In this section, we conduct simulations to verify the de-
rived results. We assume that the linear discrete-time sys-
tem (1) is obtained from sampling a continuous-time linear
process ẋ(t) = Ax(t), where A =

[
1 0
0 −0.5

]
, and the sam-

pling interval is 0.1s. The initial system state covariance
matrix is given by Σ = [ 1 0

0 1 ]. Moreover, we assume that
three sensors are deployed to measure the dynamic process,
and their measurement matrices are

C1 = [1, 5], C2 = [3,−1], C3 = [1, 2].

We assume that the process and measurement noise covari-
ance matrices are Q = 3I,R = 4I .

We consider the asynchronous measurement case. We as-
sume that at every sampling time, the measurement from

sensor 1 and sensor 2 are available. However, the measure
from sensor 3 are only available every 0.2s 1. This models
the case that certain sensors, for example the GPS sensors,
requires small sensing and computational resources and their
measurements are available almost instantly. However, some
other sensors, such as the vision based localization sensors,
might require time for computation. Therefore, their mea-
surements are only available at a low frequency.

In the first simulation, we assume that the first sensor is
attacked with a1(k) = 10 for all k. Let γ = 0.8 in the secure
state estimation algorithm. The estimate from the proposed
secure estimation algorithm and from the Kalman estimator
are plotted in Fig. 1.
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Fig. 1: Secure estimate v.s. Kalman estimate

Moreover, the accumulated estimation error defined as∑T
k=1 ‖x(k)− x̂(k)‖2 for the Kalman estimator and the se-

cure estimator are 42.13 and 17.71, respectively. Therefore,
in the presence of attacks, the secure estimation algorithm
provides a more reliable estimate with a smaller estimation
error as compared to the Kalman estimator.

In the second simulation, we consider two scenarios, 1)
all the sensors are benign and 2) the first sensor is under at-
tack and a1(k) = 10 for all k. We compute the empirical
Mean Squared Error (MSE) of the secure estimator for each
scenario and for different choices of γ. Define relative MSE
as the MSE of the secure state estimator divided by the MSE
of the Kalman filter without attacks. Fig. 2 is the plot of rel-
ative MSE verses different values of γ. It is clear that when
there are no attacks, a larger γ guarantees a smaller estima-
tion error. While in the presence of attacks, the relative MSE
achieves the minimum at around γ = 0.6.

7 Conclusions

This paper studies the secure state estimation problem of
a linear time-varying process in the presence of sparse sen-
sor attacks and stochastic noises. We first propose a method
to decompose the Kalman filter using only local sensor mea-
surements. Based on this decomposition, a convex optimiza-
tion based secure state estimation scheme is proposed. The
performance of this secure state estimation scheme both with
and without attacks is analyzed. The reformulation of the

1In the simulation, we only consider the periodic measurement case.
However, our proposed method also applies to the aperiodic measurement
case by invoking the modeling approach noted in Remark 1.
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Fig. 2: Relative MSE v.s. different values of γ

secure state estimation scheme to implementable forms are
also studied. In the end, simulations are conducted to verify
the derived result.

Appendix

A. Proof of Lemma 4
Proof. Since

A(k)− LiCi(k + 1)A(k)

= A(k)− 1

1 + Ci(k + 1)A(k)S
A(k)SCi(k + 1)A(k)

= A(k)(I − 1

1 + Ci(k + 1)A(k)S
SCi(k + 1)A(k)),

the invertibility of A(k) − LiCi(k + 1)A(k) is equivalent
to that of I − SCi(k+1)

1+Ci(k+1)A(k)SA(k). We will prove this by

contradiction. Suppose that I − SCi(k+1)
1+Ci(k+1)A(k)SA(k) is not

invertible, then there is a non-zero vector z such that

(I − SCi(k + 1)

1 + Ci(k + 1)A(k)S
A(k))z = 0.

Then

z =
Ci(k + 1)A(k)z

1 + Ci(k + 1)A(k)S
S.

Therefore we have that Ci(k + 1)A(k)z 6= 0. Since

Ci(k + 1)A(k)z =
Ci(k + 1)A(k)z

1 + Ci(k + 1)A(k)S
Ci(k + 1)A(k)S,

we have

1 =
Ci(k + 1)A(k)S

1 + Ci(k + 1)A(k)S
.

However, this is not possible. Therefore,
I − SCi(k+1)

1+Ci(k+1)A(k)SA(k) is invertible. The proof is
completed.

B. Proof of Lemma 5
Proof. We prove this using induction. Suppose∑m
i=1 Fi(k) = I . From (7) and (8), we have

Fi(k + 1)A(k)−Ki(k + 1)Ci(k + 1)A(k)

= (A(k)−K(k + 1)C(k + 1)A(k))Fi(k).

Sum up the above equation over i, we obtain that

m∑
i=1

Fi(k + 1)A(k)−K(k + 1)C(k + 1)A(k)

= (A(k)−K(k + 1)C(k + 1)A(k))

m∑
i=1

Fi(k).

Since
∑m
i=1 Fi(k) = I , we then have from the above that

m∑
i=1

Fi(k + 1)A(k) = A(k).

SinceA(k) is invertible, we further have that
∑m
i=1 Fi(k+

1) = I . Since
∑m
i=1 Fi(0) = I , we know that∑m

i=1 Fi(k) = I for all k.
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