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Abstract— This paper is concerned with the mean square
stabilization problem of discrete-time LTI systems over a power
constrained fading channel. Different from existing research
works, the channel considered in this paper suffers from both
fading and additive noises. We allow any form of causal channel
encoders/decoders, unlike linear encoders/decoders commonly
studied in the literature. Sufficient conditions and necessary
conditions for the mean square stabilizability are given in
terms of channel parameters such as transmission power and
fading and additive noise statistics in relation to the unstable
eigenvalues of the open-loop system matrix. The corresponding
mean square capacity of the power constrained fading channel
under causal encoders/decoders is given. It is proved that
this mean square capacity is smaller than the corresponding
Shannon channel capacity. In the end, numerical examples are
presented, which demonstrate that the causal encoders/decoders
render less restrictive stabilizability conditions than those under
linear encoders/decoders studied in the existing works.

I. INTRODUCTION

Control over communication networks has been a hot
research topic in the past decade [1]. This is mainly mo-
tivated by the rapid development of wireless communication
technology that enables the connection of geographically
distributed systems and devices. However, the insertion of
wireless communication networks also poses challenges in
analysis and design of control systems due to constraints
and uncertainties in communications. One must take the
communication networks into consideration and analyze how
they affect the stability and performance of the closed-loop
control systems.

Until now, there have been plentiful results that reveal
requirements on communication channels to ensure the sta-
bilizability. For noiseless digital channels, the celebrated data
rate theorem is given in [2]. For noisy channels, the problem
is complicated by the fact that different channel capacities
are required under different stability definitions. For almost
sure stability, [3] shows that the Shannon capacity in relation
to unstable dynamics of a system constitutes the critical
condition for its stabilizability. While for moment stability,
[4] shows that the Shannon capacity is too optimistic while
the zero-error capacity is too pessimistic, and the anytime
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capacity introduced in this paper characterizes the stabiliz-
ability conditions. Essentially, to keep the η-moment of the
state of an unstable scalar plant bounded, it is necessary
and sufficient for the feedback channel’s anytime capacity
corresponding to anytime-reliability α = ηlog2|λ| to be
greater than log2|λ|, where λ is the unstable eigenvalue of the
plant. The anytime capacity has a more stringent reliability
requirement than the Shannon capacity. However, it is worthy
noting that there exist no systematic method to calculate the
anytime capacities of channels.

In control community, the anytime capacity is usually
studied under the mean square stability requirement, for
which the anytime capacity is commonly named as the
mean square capacity. For example, [5] characterizes the
mean square capacity of a fading channel. [6] studies the
mean square stabilization problem over a power constrained
AWGN channel and characterizes the critical capacity to
ensure mean square stabilizability. They further show that
the extension from linear encoders/decoders to more general
causal encoders/decoders cannot provide additional benefits
of increasing the channel capacity [7]. Specifically, the result-
s stated above deal with fading channels or AWGN channels
separately. While in wireless communications, it is practical
to consider them as a whole. In this paper, we are interested
in a power constrained fading channel which is corrupted by
both fading and AWGN. We aim to find the critical condition
on the channel to ensure the mean square stabilizability of
the system. Note that [8] has derived the necessary and
sufficient condition for such kind of channel to ensure mean
square stabilizability under a linear encoder/decoder. It is still
unknown whether we can achieve a higher channel capacity
with more general causal strategies. This paper provides a
positive answer to this question.

This paper is organized as follows. Problem formulation
and some preliminaries are given in Section 2. Section 3
provides the results for scalar systems. Section 4 discusses
the extension to vector systems. Section 5 provides numer-
ical illustrations and this paper ends with some concluding
remarks in Section 6.

II. PROBLEM FORMULATION AND PRELIMINARIES

This paper studies the following single-input discrete-time
linear system

xt+1 = Axt +But (1)

where x ∈ Rn is the system state and u ∈ R is the control
input. Without loss of generality, we assume that all the
eigenvalues of A are unstable, i.e., |λi(A)| ≥ 1 for all i =
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1, 2, . . . , n [7]. The initial value x0 is randomly generated
from a Gaussian distribution with zero mean and bounded
covariance Σx0 . The system state xt is observed by a sensor
and then encoded and transmitted to the controller through
a power constrained fading channel. The communication
channel is modeled as

rt = gtst + nt (2)

in which st denotes the channel input; rt represents the
channel output; {gt} is an i.i.d. stochastic process modeling
the fading effects and {nt} is the additive white Gaussian
noise with zero-mean and known variance σ2

n. The channel
input st must satisfy an average power constraint, i.e.,
E{s2t} ≤ P . We also assume that x0, g0, n0, g1, n1, . . . are
independent. In the paper, it is assumed that after each
transmission, the instantaneous value of the fading factor
gt is known to the decoder, which is a reasonable assump-
tion for slowly varying channels with channel estimation
[9]. The instantaneous Shannon channel capacity is ct =
1
2 ln
(
1 +

g2tP
σ2
n

)
with ct being measured in nats/transmission.

The feedback configuration among the plant, the sensor and
the controller, and the channel encoder/decoder structure are
depicted in Fig. 1. In this paper, we try to find requirements

Plant

Sensor/EncoderController/Decoder

Fig. 1. Network control structure over power constraint fading channel

on the power constrained fading channel such that there
exists a pair of causal encoder/decoder {ft}, {ht} that can
mean square stabilize the LTI dynamics (1), i.e., to render
limt→∞E{xtx′t} = 0.

To solve this problem, the following preliminaries are
needed, which are borrowed from [7]. Throughout the paper,
a sequence {χi}ti=0 is denoted by χt; random variables are
denoted by uppercase letters, and their realizations by lower
case letters. All random variables are assumed to exist on a
common probability space with measure P . The probability
density of a random variable X in Euclidean space with
respect to Lebesgue measure on the space is denoted by pX ,
and the probability density of X conditioned on the σ-field
generated by the event Y = y by pX|y . Let the expectation
operator be denoted by E, and the expectation conditioned on
the event Y = y by Ey . We use log to denote the logarithm
to the base two, and ln to denote the natural logarithm.

The differential entropy of X is defined by H(X) =
−E{lnpX}, provided that the defining integral exists. Denote
the conditional entropy of X given the event Y = y by

Hy(X) = H(X|Y = y) = −Ey{lnpX|y}, and the random
variable associated with Hy(X) by HY (X). The average
conditional entropy of X given the event Y = y and averaged
over Y is defined by H(X|Y ) = E{HY (X)}, and the
average conditional entropy of X given the events Y = y
and Z = z and averaged only over Y by Hz(X|Y ) =
Ez{HY,Z(X)}. The conditional mutual information between
two random variables X and Y given the event Z = z
is defined by Iz(X;Y ) = Hz(X) − Hz(X|Y ). Given a
random variable X ∈ Rn with entropy H(X), the entropy
power of X is defined by N(X) = 1

2πee
2
nH(X). Denote the

conditional entropy power of X given the event Y = y by
Ny(X) = 1

2πee
2
nHy(X), and the random variable associated

with Ny(X) by NY (X). The average conditional entropy
power of X given the event Y = y and averaged over
Y is defined by N(X|Y ) = E{NY (X)}, and the average
conditional entropy power of X given the events Y = y
and Z = z and averaged only over Y by Nz(X|Y ) =
Ez{NY,Z(X)}. The following lemma shows that the entropy
power of a random variable provides an estimation of the
lower bound for its variance.

Lemma 1 ([7]): Let X be an n-dimensional random vari-
able. Then Ny(X) ≤ 1

nEy{‖X‖
2}.

Lemma 2: Let X be an n-dimensional random variable,
f(X) be a function of X , and Y = f(X) + N with N
being a random variable that is independent with X . Then
I(X;Y ) = I(f(X);Y ).

Proof: Since H(Y |X) = H(Y |X, f(X)) ≤
H(Y |f(X)), we have H(Y ) = I(X;Y ) + H(Y |X) ≤
I(X;Y ) + H(Y |f(X)). Thus H(Y ) − H(Y |f(X)) =
I(Y ; f(X)) ≤ I(X;Y ). Besides, noting that X → f(X)→
Y forms a Markov chain, the data processing inequality [10]
implies that I(X;Y ) ≤ I(f(X);Y ). Combining the two
facts, we have I(X;Y ) = I(f(X);Y ).

Remark 1: Lemma 2 indicates that for the AWGN chan-
nel, the amount of information that the channel output con-
tains about the source is equal to the amount of information
that the channel output contains about the channel input.

III. SCALAR SYSTEMS

To better convey our ideas, we start with scalar systems.
Consider the following scalar system

xt+1 = λxt + ut (3)

where |λ| ≥ 1 and E{x20} = σ2
x0

. With the communication
channel given in (2), the stabilizability result is stated in the
following theorem.

Theorem 1: There exists a causal encoder/decoder pair
{ft}, {ht}, such that the system (3) can be stabilized over
the communication channel (2) in mean square sense if and
only if

log|λ| < −1

2
logE{ σ2

n

σ2
n + g2tP

} (4)

Theorem 1 indicates that the mean square capacity
of the power constraint fading channel is CMSC =

− 1
2 logE{ σ2

n

σ2
n+g

2
tP
}. In the following, we will prove the

necessity and sufficiency of Theorem 1, respectively. The
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proof essentially follows the same steps as in [11], [7], [12],
however, with some differences due to the channel structure.

A. Proof of Necessity

The proof of necessity follows from the intuition below. In
view of Lemma 1, the entropy power provides a lower bound
for the mean square value of the system state. We thus can
use the average entropy power as a measure of the uncertain
region of the system state and analyze its update. At time t,
the controller maintains a knowledge of the uncertain region
of xt. When it takes action on the plant, the average uncertain
region of xt+1 predicated by the controller is expanded to λ2

times that of xt. This is the iteration we term as dynamics
update, which describes the update of the uncertain region
of x maintained by the controller from time t to t+ 1. After
receiving information about xt+1 from the sensor through
the communication channel, the controller can reduce the
predication error of the uncertain region of xt+1 by a factor
of E{ σ2

n

σ2
n+g

2
tP
}. This is the iteration we term as communi-

cation update, which describes the update of the uncertain
region of x maintained by the controller at time t + 1 after
it has received the information about xt+1 from the sensor
through the communication channel. Thus to ensure mean
square stability, the average expanding factor λ2E{ σ2

n

σ2
n+g

2
tP
}

of the system state’s uncertain region should be smaller than
one, which gives the necessary requirement in Theorem 1.
The formal proof is stated as follows. Here we use the
uppercase letters X,S,R,G to denote the random variables
of the system state, the channel input, the channel output and
the channel fading coefficient. We use the lowercase letters
x, s, r, g to denote their realizations.

1) Communication Update: The average entropy power of
Xt conditioned on (Rt, Gt) is N(Xt|Rt,Gt)=E{NRt,Gt (Xt)}

(a)
=

E{E{NRt,Gt (Xt)|R
t−1,Gt}}(b)= 1

2πeE{E{e
2H
Rt,Gt

(Xt)|Rt−1,Gt}}

where (a) follows from the law of total expectation and
(b) follows from the definition of entropy power. Since
E{e2HRt,Gt (Xt)|Rt−1 = rt−1, Gt = gt}
(c)

≥ e2E{HRt,Gt (Xt)|R
t−1=rt−1,Gt=gt}

(d)
= e2H(Xt|Rt,Rt−1=rt−1,Gt=gt)

(e)
= e2(H(Xt|Rt−1=rt−1,Gt=gt)−I(Xt,Rt|Rt−1=rt−1,Gt=gt))

(f)
= e2(H(Xt|Rt−1=rt−1,Gt=gt)−I(St,Rt|Rt−1=rt−1,Gt=gt))

(g)

≥ e2(H(Xt|Rt−1=rt−1,Gt=gt)−ct)

(h)
= e−2cte2H(Xt|Rt−1=rt−1,Gt−1=gt−1)

where (c) follows from Jensen’s inequality; (d) follows
from the definition of conditional entropy; (e) follows
from the definition of conditional mutual information; (f)
follows from Lemma 2; (g) follows from the definition of
channel capacity, i.e., I(St, Rt|Rt−1 = rt−1, Gt = gt) ≤ ct
and (h) follows from the fact that Gt is independent with
Xt, we have N(Xt|Rt,Gt)≥ 1

2πeE{e
−2Cte

2H
Rt−1,Gt−1 (Xt)}=

E{ σ2n
σ2n+g2t P

}N(Xt|Rt−1,Gt−1).

2) Dynamics Update: Since e2H(Xt+1|Rt=rt,Gt=gt) =

e2H(λXt+Ut|Rt=rt,Gt=gt) (i)
= e2H(λXt|Rt=rt,Gt=gt) (j)

=
e2H(Xt|Rt=rt,Gt=gt)+2 ln |λ| = λ2e2H(Xt|Rt=rt,Gt=gt) where
(i) follows from the fact that ut = ht(r

t, gt) and (j)
follows from Theorem 8.6.4 in [10], we have N(Xt+1|Rt,Gt)≥

E
{

1
2πeλ

2e
2H
Rt,Gt

(Xt)
}
=λ2N(Xt|Rt,Gt).

3) Proof of Necessity: Combining the results of
communication update and dynamics update, we have
N(Xt+1|Rt,Gt)≥λ2E{ σ2n

σ2n+g2t P
}N(Xt|Rt−1,Gt−1). In view of

Lemma 1, N(Xt+1|Rt, Gt) should converge to zero
asymptotically. Thus λ2E{ σ2

n

σ2
n+g

2
tP
} < 1, which is (4) and

this proves the necessity.

B. Proof of Sufficiency

To prove the sufficiency, we need to construct a pair of
encoder and decoder. The encoder and decoder are designed
following an ”estimation then control” strategy. The con-
troller consecutively estimates the initial state x0 by using the
received information from the channel and then applies an
equivalent control to the plant. The reason for adopting such
strategy is explained as follows. The response of the linear
system is xt = λt(x0 − x̂t) with x̂t = −

∑t−1
i=0 λ

−1−iui,
which means E{x2t} = λ2tE{(x0 − x̂t)2}. We can treat x̂t
as an estimate of the controller for the initial state x0. If the
estimation error E{(x0− x̂t)2} converges to zero at a speed
that is greater than λ2, i.e., there exists η > λ2 and α > 0,
such that E{(x0− x̂t)2} ≤ α

ηt , the mean square value of the

system state would be bounded by E{x2t} ≤ α
(
λ2

η

)t
. Thus

lim
t→∞

E{x2t} = 0, i.e., system (3) is mean square stable. This
intuition can be formalized using the following lemma.

Lemma 3 ([12]): If there exists an estimation scheme x̂t
for the initial system state x0, such that the estimation error
et = x̂t − x0 satisfies the following property,

E{et} = 0 (5)
lim
t→∞

AtE{ete′t}(A′)t = 0 (6)

then the system (1) can be mean square stabilized by the
controller ut = K

(
Atx̂t +

∑t
i=1A

t−iBui−1

)
with K

being selected such that A+BK is stable.
When gt is known at the receiver, channel (2) resembles

an AWGN channel. Shannon shows that when estimating a
Gaussian random variable through an AWGN channel, the
minimal mean square estimation error can be attained by
using linear encoders and decoders, respectively [13]. And
the minimal mean square error variance is given by Pσ2

n

σ2
n+g

2
tP

.
Thus through one channel use, we can at best decrease the
estimation error by a factor of σ2

n

σ2
n+g

2
tP

. Since gt is i.i.d.,
we can transmit the estimation error from the decoder to
the encoder and iteratively conduct the minimal mean square
estimation process. Then the estimation error would decrease
on average at a speed of E{ σ2

n

σ2
n+g

2
tP
}. If λ2E{ σ2

n

σ2
n+g

2
tP
} <

1, in view of Lemma 3, system (3) can be mean square
stabilized. The estimation strategy actually follows the prin-
ciple of the well-known scheme of Schalkwijk [14], which
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utilizes the noiseless feedback link to consecutively refine
the estimation error. The detailed encoder/decoder design and
stability analysis are given as follows.

1) Encoder/Decoder Design: Suppose the estimation of
x0 formed by the decoder is x̂t at time t and the estimation
error is et = x̂t − x0. The encoder is designed as

s0 =

√
P

σ2
x0

x0

st =

√
P

σ2
et−1

(x̂t−1 − x0) , t ≥ 1

(7)

The decoder is designed as

x̂0 =

√
σ2
x0

P
r0

x̂t = x̂t−1 −
E{rtet−1|gt}
E{r2t |gt}

rt, t ≥ 1

(8)

with σ2
et−1

representing the variance of et−1.
2) Proof of Sufficiency: Since r0 = g0s0 + n0, in view

of (7) and (8), we have e0 = (g0 − 1)x0 +

√
σ2
x0

P n0.
Because g0, x0, n0 are independent and x0, n0 follows a zero
mean Gaussian distribution, we know that the conditional
probability distribution of e0 given the event g0 is Gaussian
and E{e0|g0} = 0, E{e20|g0} = (g0 − 1)2σ2

x0
+

σ2
x0
σ2
n

P . Thus
E{e0} = E{E{e0|g0}} = 0 and E{e20} = E{E{e20|g0}} =

E{(g0 − 1)2}σ2
x0

+
σ2
x0
σ2
n

P .
For t ≥ 1, in view of (7) and (8), we have

et = et−1 −
E{rtet−1|gt}
E{r2t |gt}

rt

=
(

1− gt

√
P

σ2
et−1

E{rtet−1|gt}
E{r2t |gt}

)
et−1−

E{rtet−1|gt}
E{r2t |gt}

nt

Thus the conditional probability distribution for et given the
event gt is Gaussian. We also have

E{et} = E{E{et|gt}}

= E
{(

1− gt

√
P

σ2
et−1

E{rtet−1|gt}
E{r2t |gt}

)
E{et−1|gt}

}
(a)
= E

{(
1− gt

√
P

σ2
et−1

E{rtet−1|gt}
E{r2t |gt}

)}
E{et−1}

where (a) follows from the fact that gt is independent with
et−1. Since E{e0} = 0, we further know that E{et} ≡ 0.
The sufficient condition (5) is satisfied.

Since et−1, gt and nt are independent, we have
E{e2t−1|gt} = E{e2t−1} and E{n2t |gt} = E{n2t}, which im-
plies E{r2t |gt} = E

{(
gt
√

P
σ2
et−1

et−1+nt
)2|gt} = σ2

n+g2tP

and E{rtet−1|gt} = E
{
et−1

(
gt
√

P
σ2
et−1

et−1 + nt
)
|gt
}

=

gt
√
Pσ2

et−1
. Since E{e2t |gt} = E{e2t−1|gt} −

E{rtet−1|gt}2
E{r2t |gt}

,

we also have E{e2t |gt} = E{e2t−1} −
g2tPE{e2t−1}
σ2
n+g

2
tP

=

E{e2t−1}
σ2
n

σ2
n+g

2
tP

, which implies E{e2t} = E{E{e2t |gt}} =

E{e2t−1}E{
σ2
n

σ2
n+g

2
tP
}. Thus if λ2E{ σ2

n

σ2
n+g

2
tP
} < 1, the de-

signed encoder/decoder pair can guarantee (6). In view of
Lemma 3, the sufficiency of Theorem 1 is proved.

Remark 2: We can show that CMSC is smaller than the
Shannon capacity, which is CShannon = E{ct} [9]. From
Jensen’s inequality, we know that E{2−2ct} ≥ 2−2E{ct}

and the equality holds if and only if ct is a constant. Thus
it follows that CMSC = 1

2 log 1
E{2−2ct} ≤

1
2 log 1

2−2E{ct} =

E{ct} = CShannon and the equality holds if and only if ct
is a constant.

Remark 3: By letting gt in (4) be the Bernoulli distribu-
tion with failure probability ε, and taking the limit σ2

n → 0
and P →∞, we can show that the necessary and sufficient
condition to ensure mean square stabilizability for the real
erasure channel is ε < 1

λ2 , which recovers the result in [5].
If we let gt be a constant with gt = 1, then the studied
power constrained fading channel degenerates to the AWGN
channel and the (4) degenerates to 1

2 log(1 + P
σ2
n

) < log|λ|,
which recovers the result in [4], [6]. If σ2

n = 0 and the event
gt = 0 has zero probability measure, the right hand side of
(4) becomes infinity. Then for any λ, (4) holds automatically.
This is reasonable since we have assumed that gt is known
at the decoder side, thus if there is no additive noise, the
channel resembles a perfect communication link. Since (3)
is controllable, we can always find a pair of encoder and
decoder to stabilize the system.

IV. VECTOR SYSTEMS

For vector systems, the situation becomes complicated by
the fact that we have n sources xi,0 and only one channel,
where xi,0 denotes the i-th element of x0. Firstly, we would
analyze the achievable minimal mean square estimation error
for estimating x0 over the channel (2) during one channel
use. Consider the following Markov chain

X0 → St = ft(X0)→ Rt → X̂t = ht(Rt)

where X0 ∈ Rn denotes the Gaussian initial state with
covariance matrix Σx0

; ft(·) is a scalar-valued function
denoting the channel encoder for (2); Rt denotes the channel
output and X̂t is the estimation of X0 formed by the decoder
with decoding rule ht(·).

Denote the estimation error as et = X0 − X̂t, in view of
Lemma 1, we have 1

n trE{ete′t} ≥ 1
2πee

2
nH(et|Rt). Since

H(et|Rt) = H(X0 − ht(Rt)|Rt) = H(X0|Rt)
= H(X0)− I(X0;Rt)

(a)
= H(X0)− I(ft(X0);Rt)

≥ 1

2
ln((2πe)ndet(Σx0

))− 1

2
ln(1 +

g2tP

σ2
n

)

where (a) follows from Lemma 2, thus we have

trE{ete′t} ≥ n det(Σx0
)
( σ2

n

g2tP + σ2
n

) 1
n

From the above inequality, we know that the minimal mean
square error is given in terms of σ2

n

g2tP+σ2
n

. However, this

2468



is only for the sum of the estimation errors ei,t with ei,t
being the i-th element of et. There is no indication on the
convergence speed for every single ei,t. Lemma 3 implies
that we should design the encoder/decoder to render that
limt→∞λ

2t
i E{e2i,t} = 0 for all i, which places separate

requirements for the convergence speed of each ei,t. Thus we
need to optimally allocate channel resources to each unstable
state variable.

The previous analysis also implies that we should treat the
unstable modes of A separately. Here we focus on the real
Jordan canonical form of system (1). Let λ1, . . . , λd be the
distinct unstable eigenvalues (if λi is complex, we exclude
from this list the complex conjugates λ∗i ) of A in (1), and
let mi be the algebraic multiplicity of each λi. The real
Jordan canonical form J of A then has the block diagonal
structure J = diag(J1, . . . , Jd) ∈ Rn×n, where the block
Ji ∈ Rµi×µi and detJi = λµii , with

µi =

{
mi if λi ∈ R
2mi otherwise

It is clear that we can equivalently study the following
dynamical system instead of (1)

xk+1 = Jxk + TBui (9)

for some similarity matrix T . Let U = {1, . . . , d} denote the
index set of unstable eigenvalues.

Theorem 2: There exists a causal encoder/decoder pair
{ft}, {ht}, such that the LTI dynamics (1) can be stabilized
over the communication channel (2) in mean square sense if

d∑
i=1

µilog|λi| < −
1

2
logE{ σ2

n

σ2
n + g2tP

} (10)

and only if (log|λ1|, . . . , log|λd|) ∈ Rd satisfy that for all
vi ∈ {0, . . . ,mi} and i ∈ U∑

i∈U
aivilog|λi| < −

v

2
logE

{( σ2
n

σ2
n + g2tP

) 1
v
}

(11)

where v =
∑
i∈U aivi, and ai = 1 if λi ∈ R, and ai = 2

otherwise.
Proof: For the proof of necessity, notice that each

block Ji has an invariant real subspace Avi of dimension
aivi, for any vi ∈ {0, . . . ,mi}. Consider the subspace A
formed by taking the product of the invariant subspaces Avi
for each real Jordan block. The total dimension of A is
v =

∑
i∈U aivi. Denote by xV of the components of x

belonging to A. Then xV evolves as

xVk+1 = JVxVk+1 +QTuk (12)

where Q is a transformation matrix and detJV = Πi∈Uλ
aivi
i .

Since Xk is mean square stable, it is necessary that the
subdynamics (12) is mean square stable. Similar to the
necessity proof in Theorem 1, we may derive the necessary
condition (11). And this completes the proof of necessity.

Here we prove the sufficiency using the idea of Time
Division Multiple Access (TDMA). Based on the previous
encoder/decoder design for scalar systems, the following

information transmission strategy is designed for the vector
system. Without loss of generality, here we assume that
λ1, . . . , λd are real and mi = 1. For other cases, readers can
refer to the analysis discussed in Chapter 2 of [1]. Specifical-
ly, under this assumption, J is a diagonal matrix and d = n.
The sensor transmits periodically with a period of τ . During
one channel use, the sensor only transmits the estimation
error of the j-th value of x0 using the scheme devised for
scalar systems. The relative transmission frequency for the j-
th value of x0 is scheduled to be αj among the τ transmission
period with

∑n
j=1 αj = 1. The receiver maintains an array

that represents the most recent estimation of x0, which is set
to 0 for t = 0. When the information about the j-th value
of x0 is transmitted, only the estimation of the j-th value of
x0 is updated at the decoder side, and the other estimation
values remain unchanged. After updating the estimation, the
controller takes action as the one designed in Lemma 3. If
the diagonal elements of AtE{ete′t}(A′)t converge to zeros
asymptotically, i.e., for i = 1, . . . , n, limt→∞λ

2t
i E{e2i,t} = 0

, the conditions in Lemma 3 can be satisfied. Since the trans-
mission is scheduled periodically, we only need to require
that limk→∞λ

2kτ
i E{e2i,kτ} = 0, ∀i = 1, . . . , n. Following

our designed transmission scheme, we have E{e2i,kτ} =

E{ σ2
n

σ2
n+g

2
tP
}αikτE{e2i,0}. If λ2iE{

σ2
n

σ2
n+g

2
tP
}αi < 1 for all

i = 1, . . . n, the sufficient condition in Lemma 3 can be
satisfied. To complete the proof, we only need to show the
equivalence between the requirement λ2iE{

σ2
n

σ2
n+g

2
tP
}αi < 1

for all i = 1, . . . n and (10). On one hand, since
∑n
i=1 αi =

1, if λ2iE{
σ2
n

σ2
n+g

2
tP
}αi < 1 for all i = 1, . . . n, we know that

(10) holds. On the other hand, if (10) holds, we can simply
choose αi = log|λi|∑

i log|λi|
, which satisfies the requirement that∑n

i=1 αi = 1 and λ2iE{
σ2
n

σ2
n+g

2
tP
}αi < 1 for all i = 1, . . . , n.

The sufficiency is proved.

V. NUMERICAL ILLUSTRATIONS

A. Scalar Systems

The authors in [8] derive the mean square capacity of
a power constrained fading channel with linear encoder-
s/decoders. The necessary and sufficient condition for s-
calar systems is 1

2 log(1 +
µ2
gP

σ2
gP+σ2

n
) > log|λ| with µg and

σ2
g being the mean and variance of gt. We can similarly

define the mean square capacity of the power constrained
fading channel with linear encoders/decoders as CMSL =
1
2 log(1 +

µ2
gP

σ2
gP+σ2

n
). Simply assume that the fading follows

the Bernoulli distribution with failure probability ε, then
the Shannon capacity, the mean square capacity achievable
with causal encoders/decoders and the mean square capac-
ity achievable with linear encoders/decoders are given as
CShannonBD

= 1−ε
2 log

(
1+ P

σ2
n

)
, CMSCBD

= − 1
2 log

(σ2
n+εP
σ2
n+P

)
,

CMSLBD
= 1

2 log
(
1 + (1−ε)2P

(1−ε)εP+σ2
n

)
. For fixed P and σ2

n,
the channel capacities are functions of ε. Let P = 1 and
σ2
n = 1, the channel capacities in relation to the erasure

probability are plotted in Fig. 2. It is clear that CShannonBD ≥
CMSCBD ≥ CMSLBD at any given erasure probability ε. This
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Fig. 2. Comparison of different channel capacities when P = 1, σ2
n = 1

result is obvious since we have proved that the Shannon
capacity is no smaller than the mean square capacity with
causal encoders/decoders. Besides, we have more freedom in
designing the causal encoders/decoders compared with the
linear encoders/decoders, thus allowing to achieve a higher
capacity. The three kinds of capacity degenerate to the same
when ε = 0 and ε = 1, which represent the AWGN channel
case and the disconnected case respectively.

B. Vector Systems

Consider the two dimensional LTI system (9) with J =[
λ1 0
0 λ2

]
, and the communication channel is (2) in which

the fading follows the Bernoulli distribution with failure
probability ε. In view of Theorem 2, a sufficient condition
to ensure mean square stabilizability is that (log|λ1|, log|λ2|)
should lie in the region of log|λ1|+log|λ2| < CMSCBD

. The
necessary requirement is given by the following region in
(log|λ1|, log|λ2|) plane

log |λ1| < CMSCBD
, log |λ2| < CMSCBD

log |λ1|+ log |λ2| < − log
(
ε+ (1− ε)

( σ2
n

σ2
n + P

) 1
2
)

The necessary and sufficient condition to ensure mean square
stability using linear encoders/decoders for this system is
given in [8], which states that (log|λ1|, log|λ2|) should be
in the region constrained by log|λ1| + log|λ2| < CMSLBD

.
Selecting P = 1, σ2

n = 1 and ε = 0.8, we can plot the
regions for (log|λ1|, log|λ2|) indicated by the sufficiency
and necessity in Theorem 2 and that indicated in Theorem
3.1 in [8] in Fig. 3. We can observe that the region of
(log|λ1|, log|λ2|) that can be stabilized with the designed
causal encoders/decoders in Section IV is much larger than
that can be stabilized by linear encoders/decoders in [8].
Thus by extending endocers/decoders from linear settings to
causal requirements, we can tolerate more unstable systems.

VI. CONCLUSION

This paper characterized the requirement for a power con-
strained fading channel to allow the existence of a causal en-
coder/decoder pair that can mean square stabilize a discrete-
time LTI system. The mean square capacity of the power
constrained fading channel with causal encoders/decoders
was given. It was shown that this mean square capacity is
smaller than the Shannon capacity and they coincide with
each other for some special situations. Throughout the paper,
the capacity was derived with the assumption that there

Necessity in Theorem 2

Sufficiency in Theorem 2

the Necessary and Sufficient Condition

in Theorem 3.1 in [8]
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Fig. 3. Stability region of (log|λ1|, log|λ2|) indicated by Theorem 2 for
a vector system

exists a perfect feedback link from the channel output to
the channel input. What would the capacity be for power
constrained fading channels when there is no such feedback
link or there is only a noisy feedback link is still under
investigation.
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