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Abstract

An adaptive backstepping control scheme is proposed for task-space trajectory tracking of robot
manipulators in the presence of uncertain parameters and external disturbances. In the case of
external disturbance-free, the developed controller guarantees that the desired trajectory is globally
asymptotically followed. Moreover, taking disturbances into consideration, the controller is
synthesized by using adaptive technique to estimate the system uncertainties. It is shown that L,
gain of the closed-loop system is allowed to be chosen arbitrarily small so as to achieve any level of L,
disturbance attenuation. The associated stability proof is constructive and accomplished by the
development of a Lyapunov function candidate. Numerical simulation results are included to verify
the control performance of the control approach derived.
© 2012 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The design of robust control system for robot manipulators in the presence of model
uncertainties is one of the most challenging tasks for control engineers. In the past decades,
several control algorithms are proposed to fulfill this objective (for example, Refs. [1-5).
The design of those controllers relies on the assumption that the exact kinematics (i.e.
Jacobian matrix) of robot manipulators is known. Unfortunately, in practical, no physical
parameters can be measured precisely in advance. And, when the robot picks up objects of
different lengths or unknown orientations, the overall kinematics are changing and
therefore, difficult to derive exactly. Besides, in some special robot systems such as space
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manipulator systems, the Jacobian matrix not only contains kinematic terms but also
involves dynamic parameters. All these conditions suggest that the kinematic uncertainty
must be taken into consideration when designing controllers.

To overcome the problem of uncertain kinematics, several approximate Jacobian
setpoint controllers [6-8] are proposed. In Ref. [6] a feedback control law for robots with
uncertain kinematics and dynamics is designed to drive the ender-effector to the desired
position. The experimental tests are also conducted later and the results are shown in
Ref. [7]. In Ref. [8], considering the kinematic and dynamic uncertainties, an amplitude-
limited torque input controller is designed to achieve the semi-global asymptotic
stabilization of the task-space setpoint control error.

However, these researches are focused on setpoint control of robots. While in most
applications, it is necessary to specify the motion in much more details than just simply
stating the desired final position. Thus, considering the trajectory tracking control problem
would be much more meaningful. Recently, an adaptive Jacobian controller was proposed
to achieve the trajectory tracking control objects of robot manipulators [9—-13]. In Ref. [9], a
new approximate Jacobian adaptive controller is proposed for trajectory tracking of robots
with uncertain kinematics and dynamics and experiments are conducted to illustrate the
performance of this controller. In Ref. [10] an actuator model is taken into consideration
when designing the trajectory tracking controller. In Ref. [11] only the information of end-
effector position in visual space and the robot’s joint angles and velocities are needed in the
synthesis of the controller. In Ref. [12], the controller is designed without requiring the
information of the task-space and joint-space velocity. Theoretically, all the mentioned
methods can achieve task-space trajectory tracking control objects under both kinematic
and dynamic uncertainties. But, few of those papers make any further discussions on the
explicit role each designed parameter performs in the closed-loop behaviors, which is
critically important for the real application of those controllers.

Backstepping technique provides a systematic closed loop construction means of Lyapunov
function to a broad class of strict-feedback nonlinear systems. Due to its simple cofiguration and
ease of implementation, this control strategy is widely applied to the various control systems,
such as output feedback control of nonlinear systems [14,15], control of electrohydraulic servos
systems [16], spacecraft slew maneuver problems [17] and so on. Recently, in some research
literatures, a novel method to analyze the explicit functions of the designed parameters in
backstepping controllers is developed [18-20]. In Ref. [19], an observer-based backstepping
output control scheme is proposed for stabilizing and controlling a class of uncertain
chaotic systems. Not only the global stability is guaranteed by the proposed controller, but
also the transient and asymptotic tracking performances are quantified as explicit functions
of the design parameters. In Ref. [20], a robust adaptive controller is proposed for uncertain
systems with unknown input time-delay to achieve the asymptotic stable. And the tracking
performance is also qualified as explicit functions of design parameters. With this technique,
transient performance can be established and improved with explicit tuning of design
parameters which helps a lot in obtaining the desired closed-loop behaviors.

In this work, an adaptive backstepping control scheme is developed to achieve the task space
trajectory tracking control objects for robot manipulators in the presence of kinematic/dynamic
uncertainty and external disturbances. Theoretical stabilization is proved and the detailed
functions of tuning parameters in the proposed controller are discussed. Moreover, taking
disturbance torque into consideration, the L, gain performance analysis is achieved to evaluate
the tracking performance. It is shown that the L, gain from disturbance torque to controlled
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output can meet the required demand by means of appropriately choosing controller gains. In
addition, this method does not need to measure the joint acceleration which to some extent
ensures the robustness of the proposed controller. The paper is organized as follows: in the
following section, we provide a formal problem statement accompanied by all the governing
equations. In Section 3, we propose control scheme and provide the associated stability analysis
for the resulting closed-loop dynamics. Section 4 presents numerical simulation results, and the
paper is closed with some concluding remarks.

Notions: Through out the paper, let R be the real number and R"” denote the space of real
n-dimensional vector. The norm of a vector x € R” is defined as |x| = +/xTx. The £»-
norm of piecewise continuous, square-integrable function u:[0,00)—R" is defined as

|ul| ., = Jo~ u(t) u(r)dz.

2. Mathematical model of robot manipulator

The dynamic model for a rigid »-link, serially connected, direct driven revolute robot is
given in joint space as follows [21]:

M(@)§+Cq.9q+9(9) =7+ 1 ()

where ¢.4,4 €R" denote joint angle, velocity and acceleration vectors, respectively; M(q) €
R™" represents the robot inertial matrix; C(q,4)q,9(¢) and T € R" denote the centripetal-
coriolis force, the gravitational force and control inputs, respectively; t; € R" is the
external disturbance which satisfies ||t | <J, where d, is a known positive constant.

Note that the dynamic model introduced in Eq. (1) has the following properties which
are helpful in subsequent control development and analysis [22]:

Property 1. The positive-definite and symmetric inertia matrix, satisfies the following
inequalities:
2 T 2 n
my||C]|" < M@l <m||¢]|” YL eR (2)
where my,m, € R are known positive bounding constants.

Property 2. The time derivative of the inertia matrix and the centripetal-Coriolis matrix
satisfy the following skew symmetric relationship:

'(M(9)—2C(¢,)=0 VL eR" 3)
Property 3. The dynamic model is linear with respect to a set of physical parameters
gd = [0d179d25' . '79d[7]T

M(9)q+C(q.9)4+9(9) = Ya(q.9.9.9)04 “)

where Y4 ( ) € R"™? is called dynamic regressor matrix.

Let x € R™(m <n) represents a task space vector that is related to the robot joint-space as
x=h(g), x=Jq (%)

where h(q) € R” denotes the differentiable forward kinematics of the manipulator, and
J(q)=(0h/0q) € R™" represents the differentiable manipulator Jacobian matrix.
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Property 4. J(q)q is linear in a set of constant parameters 0y = [0r1,0k2,. . .,qu]T contained in
the Jacobian matrix

J(q = Yi(q.9)0k (6)

where Y ( ¢) € R™*9 is called the kinematic regressor matrix. In the following sections, we
refer these parameters 6 as “kinematic parameters” even though they may actually
contain dynamic terms such as link mass in specific robot manipulator systems.

The subsequent development is also based on the assumption that all kinematic
singularities associated with J(¢) are assumed always to be avoided. For the control
synthesis, the exact kinematic and dynamic parameters are assumed not to be known. The
estimations 0,0, are adopted to make an approximation of actual physical parameters.
The control objectives are to design adaptive backstepping control law z such that

e The tracking error x—x, is globally asymptotically stable when the disturbance torque
7, 1s assumed to be zero.

e When taking the disturbance torque 7, into consideration, the L, gain of the closed loop
system is less than the given value 7.

The synthesis of the controller is also based on the assumptions that x,q,§ are
measurable. Specifically, ¢ and ¢ can be obtained from encoder/tachometer sensors, and x
could be obtained from a camera system.

3. Adaptive backstepping controller design

Backstepping is a recursive Lyapunov-based scheme. The idea of adaptive backstepping
is to design a controller recursively by considering some of the state variables as “virtual
controls” and designing them for intermediate control laws. To give a velar ideal of such
development, the following change of coordinate is made:

I =X—Xyg (7

D=q—¢ (®)

where ¢ is the virtual control for system in Eq. (7) to be determined. Careful examination
reveals that z; actually is the trajectory tracking error. And ¢ can be regarded as a
reference joint velocity. Consequently, z, is the joint velocity tracking error. To this end,
the proposed control algorithm can be made up of two closed-up controllers: the task-
space trajectory tracking one and the joint-space velocity tracking one. The control
diagram of the whole system is illustrated in Fig. 1.

Note that the trajectory tracking controller is designed for the kinematic subsystem in
Eq. (7), and by assuming the joint velocity as virtual control input and taking the tracking
error as systemic output, the trajectory tracking controller generates a reference velocity ¢
and a kinematic parameter update law which is designed to deal with the kinematic
parameter uncertainty. Then backstepping the reference joint velocity into the dynamic
subsystem in Eq. (8), the additional control torque and dynamic parameter update law are
derived to achieve the task space trajectory tracking control of robot manipulator system.
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Fig. 1. Control diagram of the whole system.

Step I: Let the controlled output is defined as
y=[,z21 P25 p3z2]t )
where the auxiliary sliding vector s has the form of
s£31+0z) (10)

where o is a positive constant.
Furthermore, the approximate estimation of s can be constructed using joint velocity as

§=Jg—xg+az (11)
To this end, the estimation error of s is calculated to be
s—5= Y0, (12)

where ;2 0,—0;.

In the following sections, the adaptive backstepping control scheme is proposed to
accomplish the task space tracking control objective. From robotic kinematics in Eq. (5),
the dynamic equation of the trajectory tracking error can be obtained as

211 =J§+ Y0, —i, (13)

It can be seen that Eq. (13) can be regarded as kinematic subsystem of the robot
manipulator related to the trajectory tracking error where defining joint velocity ¢ as
control input and tracking error z; as output. Here, we first design the virtual control ¢ for
the kinematic subsystem.

Choosing Lyapunov function as

=1 o'+ %éle‘glékjL()zdiag[y(t)]Ok (14)

where Iy £diag[kii,x0,. . .Krg] is a positive definite diagonal matrix, and the vector
function p(z) is defined as u(1) £ [ (¢), uy(0), ..., ,uq(t)]T with initial values set to be positive.
Then the derivative of V| along with Eq.(13) is given as

'y =2l 21405 T 0x+0) diaglin())0
=2 (Jg+Yi0c—3q) + 0, T} 0u+0] diagljs(1)]0;
= le()zz+.Al¢—5cd)—(§,f(l‘;‘9k— Y/(TZI) + OZdiag[ﬂ(t)]Hk (15)
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In order to arrange the foregoing equation to be negative definite, the virtual control ¢

and kinematic parameter update law are chosen

¢ =J"1(—az) + i4) (16)

0 = (Y, 21 + 28V, s)—diag[u(t)]0s. ja(t) =~ (r) (17)

where f§ is a positive constant.
Then, substituting Eqgs. (16) and (17) into Eq. (15) yields

Vi=—oziz + 22 —=20] Yis+OL T} diaglu(1))0x—0; T diaglu(1)10;) (18)
Noting the fact that
0L ;" diaglu(t))0—0; I diaglu(t)]0
q 1 - q
= > o m00ub—05) <>
! i=1

i=1

1
ZKkj

u(D(60F, + 07) <0 (19)

Finally, the derivative of the candidate Lyapunov function in Eq. (14) satisfies the
following inequality:

Vi<—ozizi +2]J2—2p0, Y] (20)

Remark 1. By calculating we can find that

Jor=Jg—J¢ =Tqg—sytoz =5 1)

This information is helpful in the following controller design procedure.

Step 2: In this step, the purpose is to design the actual control torque to track the given
reference joint velocity ¢. Differentiating Eq. (8) with respect to time ¢, we can obtain the
dynamic equation of z,

fHh=§—¢ (22)
From (4) we have

M(9)z>+C(q.9)z = M(9)§+C(q.9)q+9(q)—M(q)d— C(q.4)d—g(q)

=+ 1= Ya(4.4.¢.$)0a (23)
Multiply z;, to both sides of Eq. (23), it turns to be
B M(g)22+2; C(q.4)7 = 23 (¢ + 1=V a(q.4.6.$)00) (24)
Choosing Lyapunov function as
Va=Vi+ 35 M@z +30, 0 04+0,diaglv(n)]0, (25)
where I'y2 diag[kg1,K4,. . ..Kgp] is a symmetric positive definite diagonal matrix, and the
vector function v(¢) is defined as v(£) 2 [vi(2), v2(2),. .., vp(t)]T with initial values set to be

positive. Then the derivative of V5, along with Eq. (22) is given by
Vo=V + 2 M(g)22+2) C(q.9)02—0, ;' 0440 diag[v ()]0,
< —OCZFIFZ] —2ﬂéz YZS‘{'Z—{(}TZI +T+Ti— Yd(%%@d’”d)
+0" diag[v(1)]0,—01T;'0, (26)
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Designing the adaptive control law as
v=—J"0—pT " 8—nz + Ya(q.4.9.6)04 27)

where 7 is a positive constant.
Let the dynamic parameter estimation error vector be defined as

020,04 (28)
Then Eq. (26) can be rewritten in the following form:
Va = —azlzi— B3T3zl 0~ 208 YTs—21 Yulg.q. 6. $)04—01 150,
+0;diaglv ()]0 + 23 4
— ozl 21— Bs—Yi0y) (s— Vi) —nzd 22— 00 (Y a(q.d.6.) 2
+T510,) + 0T diaglv (1)]0—2p07 ¥ s +2 2,
= —azlz1—ps"s—B(YiD) (Yibi) + el ey—nzlzs

~05(Ya(q.4.6.9) 22T ;' 04) + 0, diagly (1104 (29)
Eq.(29) implies us to choose the following dynamic parameter update law:
0y =—TaY((q.4.0.0) 22—diaglv()]a. (1) = —I7'v(0) (30)

Subsisting Eq. (30) into Eq. (29) and using the properties given in Section 2 imply that
071" diag[v(1))0,—07 ;" diag[v(1))0,

4 1 R )4
=D vi0@aba—05)<=> 5

i=1"9 i=1

1 A
vi(0)(07 + 073) <0 31

Kdi
The derivative of the candidate Lyapunov function turns out to be

Vo< —azlni—psTs—nzl —p(Yidi) (Yid) + 2ot (32)
Before giving the conclusions in this paper, we are introducing two lemmas:

Lemma 1. The following inequalities hold for any vectors a,b € R"

2a"b<a'a+ b"b-2a"b<a"a+ b'h

Lemma 2. (LaSalle-Yoshizawa) (Krstic et al. [13]) Let x =0 be an equilibrium point of
system x = f(x,t) and suppose f is locally Lipschitz in x uniformly int. Let V : R*—> R, be a
continuously differentiable, positive definite and radially unbounded function V(x) such that

V= %_z(x)f(x,z)s—wu)so, Vi20.Vx € R' (33)

where W is a continuous function. Then, all solutions of x = f(x,¢) are globally uniformly
bounded and satisfy

lim W (x(1)) =0 (34)

In addition, if W(x) is positive definite, then the equilibrium x = 0 is globally uniformly
asymptotically stable.
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Then we have the following conclusions:

Theorem 1. Given the robotic system described by Egs. (1) and (5), the control algorithm
given by Eqs. (16) and (27) along with the parameter adaptive laws defined in Egs. (17) and
(30). If making the assumption that |t4|| =0, then

(1) the asymptotic tracking is achieved, i.e.
lim (x—x;)=0 35
t—>00

(i) the tracking performance is given by

(x—xg) (x—xg)dt< ! V>(0)
0 [04

« ha(30)
/ (k—xg) (x—x,)d<3 fﬂwﬁ 5(0) (36)
0

V2(0) = 1 0x(0) I ' 0,(0) + 104(0)"I';'0,4(0) + 07 diag[u(0)]0x + 6] diag[v(0)10,

Proof (i). Choosing function ¥V, as the candidate Lyapunov function for the robot
manipulator system. When ||z | =0, from Eq(32) we can obtain
. ~ T ~
Vy<—az{z1—PBs s—nzy 22— B(Yi0r) (Yi0p) (37
From Eq. (37) we established that 7, is non-increasing. Hence, zl,zz,ék,édare bounded.
Because V; is a continuously differentiable, positive cjeﬁTnite and radially unbounded function.
And function W(x)2azlz) + Bs's + nz3z + B(Yi0r) (Yi0y) is a positive definite function

with respect to variables z1,s,22, Y;0r. Then by applying Lemma 2, it further follows that
Z1, 8,22, Y0 are globally uniformly asymptotically stable which implies that

Jlim (x—xz)=0 (38)
Proof (ii). From Eq. (37), we also have that
0 1 1
/ 21(0) 7 (r)dr< 5 (V2(0)=1(00) <~ 72(0) (39)
0

Thus, by setting z;(0) =0, i =1,2, we obtain
V2(0) =1 0,(0)" I ' 04(0) +104(0)"T';'0,4(0) + 0 diag [u(0)] 0, + 0] diag[v(0)]0, (40)

which is a decreasing function with respect to each elements of matrix I'y,I’;, an increasing
function with respect to each elements of vectors p(0),v(0). Resulting from Egs. (39) and
(40), this means that the ¥, norm of the tracking error is

/0 T x| @ 00T 910) + 5 0,(0)" 7' 4(0)
+0; diag[u(0)]0) + 0, diag[v(0)]0,)) 1)
From Egs. (7), (8) and (16), we get

/ (.i?—xd)T(.x'?—.fcd)dtz / (]q—l—Ykék—xd)T(jq—l-Ykék—fcd)dl‘
0 0
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= / (.Alzz+.7j+Ykék—xd)T(]z2+.7j+Ykék—xd)dt
0 ) L )
= / (Jzo—az) + Yi0;) (Jzo—az) + Yi0,)de
0
X T A T ~ T ~ AT
= (Jz2) (Jzo) + 'z 21+ (Yibi) (Yi0)—2(J22) (0:21)
0

+2(J22) (Vibi)—2(az) " (Vibp)dr (42)

From Lemma 1 we can further conclude that
%) 00 R T « - T N
/ (x—ig) (x—x,)dr<3 / ((JZ2) (Jz22) + ozl 71 + (Yi0yp) (Ykok)) de 43)
0 0
Similar to Eq. (39), the following results can be obtained that

o 1
/ nzndr< . V5(0) (44)
0

o ~ T, .~ 1
JACASGANETR (45)
0
Thus, using the property of norm, it can be obtained
RN A1) 2. T 5T b
(x—xg) (x—x4)dr<3 (22 Jotaz 71 + (Yi0r) (Yi0;))ds
0 0

<3 [Tl + a2l + (Vi (Vi
0
/lmax (}T'}) 1

Thus finish the proof.

Theorem 2. Given the robotic system described by Egs. (1) and (5), the control algorithm
given by Egs. (16) and (17) along with the parameter adaptive laws defined in Eqs. (17) and
(30), when thH #0, if the following constraints on the controller parameters holds

o> p?
B> p3 (47)
nzp3+1/(4%)

The close loop system is uniformly bounded sable. And the following disturbance
rejection inequality holds:

PERVAZA() (@8)

¥l o, <7]7a

Proof. For ||t,] #0, we can define the function H as

H=V,+yy—1"1, (49)
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By calculating we can find that
H<—uz] 21—Ps's—nz 2 + pizi 21+ p38's + p3zo' 20 + 51— 1)t
2 2 1 2 1 2
<—G=plal = G-rlsl = (1-ri= g ) e~ | 3 o] )

If the parameters «,f,n are chosen to satisfy the inequalities (47), then we can get the
following dissipative inequality:

Va<ytita—y'y (51)
Integrating both sides over [0,7] yields
[ tvarsy [ slsidi-prao-v20) (52
Thus
I ¢, <vl7all o, + vV ¥2(0) (53)

where we used the facts that V,(x)>0 and «/a? + b* <a + b for nonnegative numbers a and b.

Remark 2. From the proof of Theorem 1, we can find that Y0, also converges to zero. In
addition, if the persistent excitation conditions is satisfied, the convergence of 6y to 6; can
be achieved [10]. But this is not true for the dynamic parameters 0; as we cannot achieve
the same results that as time evolves, Y0, converges to zero. So we can only get the
conclusion that 6, is bounded which is proved in Theorem 1.

Remark 3. From Theorem 1, the following conclusions can be obtained:

e The tracking performance depends on the initial estimate errors 0;(0),0,4(0) and the
explicit design parameters u(0),v(0). The smaller the values 04(0),04(0), u(0),v(0), the
better the transient performance would be.

e The bound for fooo (x—x4)"(x—x4)dr is an explicit function of design parameters and
thus computable. We can decrease the effects of the initial error on the transient
performance by increasing the adaption gain I'y,I',.

e To improve the tracking error performance we can also increase the gain o. However,
increasing o would influence the performance of f(fo (¥—x4) (x—x,)ds. Thus, it is
suggested fixing the gain « for some acceptable value and adjust the other gains such as
B,y to improve the transient performance.

Remark 4. The selection of controller parameters has direct relations with disturbance
suppression performance index y. The smaller the y, the better the disturbance suppression
effects would be. However, this would result in a greater control torque. So, by
appropriately choosing controller parameters, the compromise between control torque and
control precision can be obtained.

Remark 5. From the expression of the control law in Eq. (27) we can find that the
proposed controller does not need to measure the joint acceleration, thus the robustness
and disturbance rejection ability to the controller are enhanced.

Remark 6. The adoption of the functions u(f) and v(¢) increases the stability of the
parameter estimation procedure, which to some extent avoids the singularity of the inverse
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of the Jacobian matrix appearing. In the proposed controller, the kinematic controller’s
update law containing the inverse of the estimated Jacobian matrix which is assumed to
exist when the robot manipulator execute tasks. To reduce the possibility of the singular
phenomenon, the project function in Ref. [8] can be used to constrain the range of
parameter estimation. But the exact upper and lower bound is needed. Alternatively, the
singularity-robust inverse of the approximate Jacobian matrix methods in Ref. [23] can be
adopted to bound the virtual input ¢.

4. Numerical simulation

To study the effectiveness and performance of the proposed formation control
strategies, the detailed response is numerically simulated using the set of governing
equations of motion Egs. (1) and (5) in conjunction with the proposed control laws
[Egs. (17) and (31)]. Here, a 2-link planar space robot manipulator is adopted to make
a numerical simulation. The configuration of the model is illustrated in Fig. 2.

The physical parameters of this space robot are listed in Table 1, where m; and I; are the
mass and the moment of inertia of the ith rigid body, respectively, a; and b; are shown as Fig. 2

In the simulations, the desired end-effector trajectory of the planar manipulator is
chosen to be a circle in inertia space, i.e.

xg =[1.8cos(r), 1.8sin(n)]" (54)

Moreover, to verify the performance of the proposed Adaptive Backstepping Trajectory
Tracking Controller (ABTTC), the Approximate Jacobian Adaptive Controller (AJAC)
proposed in Ref. [9] is adopted to make a comparison. The controller parameters in
Ref. [9] is chosen as K,=diag[2,2], K, =diag[10,10], K = diag[8,8], L; =diag[0.2,0.2],
L, =diag[0.5,0.5], «=0.01. In addition, for all numerical examples presented in this
section, the position of the center of mass of the spacecraft is set asro =[0 0], the initial
configurations are set as ¢o(0) =0, ¢;(0)=7/3 and ¢,(0) = —2n/3, respectively; the initial
velocity is ¢,(0) =0, ¢,(0) = 0and ¢,(0) = 0, respectively. Accordingly, the initial kinematic

Fig. 2. Configuration of the simulation model.
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Table 1

Physical parameters of the space robot manipulator.

Link a; (m) b; (m) m; (kg) I; (kg m?)
Base - 0.5 40 6.667

1 0.5 0.5 4 0.333

2 0.5 0.5 3 0.250
Table 2

Controller parameters used for numerical analysis.

Control gains 1:(0) (i=1,2,3) vi(0)(i=1,...,6) Iy r, o p n
Value 1 0.01 21 41 1.5 15 100

and dynamic parameter estimates are chosen as

00)=[08 13 15]"
0,0=[30 1.0 1.0 200 40 10]" (55)

The actual values of the kinematic parameter and dynamic parameter are obtained
based on the physical parameter given in Table 1

0, =[0.4225 0.8936 0.9681]T
04:[2.1277 1.3404 0.6383 12.9096 4.7532 0.9521]T (56)

To demonstrate the feasibility of the proposed controller, two different situations are
considered in the simulation: (1) without external disturbance, and (2) with the external
disturbance. In both cases, the design parameters of the proposed controller are determined are
given in Table 2.

4.1. Case 1: disturbance-free

The simulation results are given in the Figs. 3-7. Fig. 3 shows desired and actual paths of
the FFSR end-effector when tracking the circle x,. The time responses of the FFSR end-
effector tracking errors, control torque, kinematic and dynamic parameter estimates are
given in Figs. 4-7, respectively.

When carefully observing the tracking error depicted in Fig. 4(a), we may find that the
tracking error converges to zero at the time of 4 s and further after about a time period of 1 s of
transient process, the tracking error stays on the zero line permanently. But in Fig. 4(b), it takes
almost 30 s for the tracking error to converge to zero and the tracking error oscillates several
times before it finally becomes stable. These are also true for the control torque, kinematic and
dynamic parameter estimations in Figs. 5-7. All the time response of the control torque,
kinematic and dynamic parameter estimation under AJAC method has slower convergence rates
and greater oscillation amplitudes when compared with ABTTC method proposed in the paper.
Additionally, from Figs. 6 and 7, it can be seen that the estimated kinematic parameters
eventually converge to their actual values. However, this is not true for dynamic parameters. But
compared with the kinematic parameter estimation procedure, the estimations of dynamic
parameters turn into the stable state much quicker than those of the kinematic parameters. The



Q. Hu et al. | Journal of the Franklin Institute 349 (2012) 1087-1105 1099

a b
2.5 2.5
2 2 ]
1.5 1.5 1
1 1 ]
g 05 5 05 ]
20 & 0 :
5 05 g 05 ]
> >
-1 -1 ]
-1.5 -15 ]
-2 2 ]
25 . . . 25 . : .
2 -1 0 1 2 2 -1 0 1 2
X-axis position X-axis position

Fig. 3. Path of the end effector: (a) ABTTC method and (b) AJAC method.

Q
(on

5 ¢ 5
g 0.01 e
[ 5]
Z () S
g g
= -0.01 .
- , 14 16 18 20
0 5 10 15 20
2 0.01 2 0.01
5 5
5 0 1 5 1
@ 2
3 -0.01 %
5+ 5+
I 14 16 18 20 O
0 5 10 15 20 0 10 20 30 40
1 (sec) t (sec)

Fig. 4. Time response of end effector tracking error: (a) ABTTC method and (b) AJAC method.

reason may lie in the fact that the kinematic parameter estimation is directly affected by the end
effector tracking error.

4.2. Case 2: considering disturbance

In this case, the following disturbance is taken into consideration, i.e.

Tg1 = [20 + 5c0s(207) + Se™¥,15 + 5sin(307) + Se=>,15 + 5sin(407) 4+ 5¢~']* (57)
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Fig. 5. Time response of control torque: (a) ABTTC method and (b) AJAC method.

If the parameters of the controlled output are chosen as p; =1, p, =1, p; =1, and the
L, gain is set as y=0.01, then we can see that the foregoing controller parameters still
satisfy the guidance of Eq. (36). The simulation results are presented in Figs. 8 and 9. From
Fig. 9, at first glance, we can find that under sinusoid disturbance the system using ABTTC
is still stable, but this is not true for AJAC; actually, in the construction of AJAC in Ref.
[9], the author fails to consider the external disturbance. Furthermore, from Fig. 8(a), we
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Fig. 6. Time response of kinematic parameter estimation (6;-dashed, @k—solid): (a) ABTTC method and (b) AJAC
method.

may find that the tracking performance achieves the same results as the one without
disturbance. However, when amplify the tracking error in Fig. 9 to see the details hidden
behind and compared with Fig. 4(a), we may find that when there exist no disturbance the
tracking converges to zero asymptotically, but when sinusoidal disturbance exists, the
tracking error comes out. But the magnitude of the tracking error is as small as 0.005,
which to some extent proves the disturbance suppression ability of the proposed controller.

Summarizing all the cases (with and/or without disturbance), it is noted that the
proposed controllers design method can significantly improve the system performance
without disturbance in both theory and simulations. Also, with disturbance case, the
proposed methods have desired results. In addition, extensive simulations were also done
using different control parameters, disturbance inputs and even combination of the desired
trajectory. These results show that in the closed-loop system the tracking target is
accomplished in spite of these undesired effects in the system. Moreover, the flexibility in
the choice of control parameters can be utilized to obtain desirable performance while
meeting the constraints on the system. These control approaches provides the theoretical
basis for the practical application of the advanced control theory to robot manipulator
control system.

5. Conclusions

In this paper, we presented a tracking control scheme based on adaptive backstepping
for a space robot manipulator system. Kinematic/dynamic uncertainty and external
disturbance with an unknown bound were employed in the development of the adaptive
parameter update laws. By defining appropriate Lyapunov function, asymptotical
stabilization is guaranteed; and also taking the external disturbance into consideration,
the dissipative equation is used to ensure the L, gain from disturbance to controlled output
is less than the required value. In addition, the function of controller parameters is analyzed
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carefully which provides application instructions and a deeper insight of the controller. The
numerical results clearly establish the robustness of the proposed control methodologies in
tracking a desired trajectory in the presence of model uncertainties, time-varying disturbances.
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While the simulation results presented in this paper merely illustrate formulations for the
particular trajectories tracking, further testing would be required to reach any conclusions about
the efficacy of the control and adaptation laws for tracking arbitrary trajectory. In addition, this
control scheme places no restriction on the magnitude of the desired control, and the design with
explicitly considering the actuator limit is also being investigated. Future work is planned to
study the digital implementation of such control scheme on hardware platforms for attitude
control experimentation.
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