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Abstract

An adaptive backstepping control scheme is proposed for task-space trajectory tracking of robot

manipulators in the presence of uncertain parameters and external disturbances. In the case of

external disturbance-free, the developed controller guarantees that the desired trajectory is globally

asymptotically followed. Moreover, taking disturbances into consideration, the controller is

synthesized by using adaptive technique to estimate the system uncertainties. It is shown that L2

gain of the closed-loop system is allowed to be chosen arbitrarily small so as to achieve any level of L2

disturbance attenuation. The associated stability proof is constructive and accomplished by the

development of a Lyapunov function candidate. Numerical simulation results are included to verify

the control performance of the control approach derived.

& 2012 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
1. Introduction

The design of robust control system for robot manipulators in the presence of model
uncertainties is one of the most challenging tasks for control engineers. In the past decades,
several control algorithms are proposed to fulfill this objective (for example, Refs. [1–5).
The design of those controllers relies on the assumption that the exact kinematics (i.e.
Jacobian matrix) of robot manipulators is known. Unfortunately, in practical, no physical
parameters can be measured precisely in advance. And, when the robot picks up objects of
different lengths or unknown orientations, the overall kinematics are changing and
therefore, difficult to derive exactly. Besides, in some special robot systems such as space
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manipulator systems, the Jacobian matrix not only contains kinematic terms but also
involves dynamic parameters. All these conditions suggest that the kinematic uncertainty
must be taken into consideration when designing controllers.
To overcome the problem of uncertain kinematics, several approximate Jacobian

setpoint controllers [6–8] are proposed. In Ref. [6] a feedback control law for robots with
uncertain kinematics and dynamics is designed to drive the ender-effector to the desired
position. The experimental tests are also conducted later and the results are shown in
Ref. [7]. In Ref. [8], considering the kinematic and dynamic uncertainties, an amplitude-
limited torque input controller is designed to achieve the semi-global asymptotic
stabilization of the task-space setpoint control error.
However, these researches are focused on setpoint control of robots. While in most

applications, it is necessary to specify the motion in much more details than just simply
stating the desired final position. Thus, considering the trajectory tracking control problem
would be much more meaningful. Recently, an adaptive Jacobian controller was proposed
to achieve the trajectory tracking control objects of robot manipulators [9–13]. In Ref. [9], a
new approximate Jacobian adaptive controller is proposed for trajectory tracking of robots
with uncertain kinematics and dynamics and experiments are conducted to illustrate the
performance of this controller. In Ref. [10] an actuator model is taken into consideration
when designing the trajectory tracking controller. In Ref. [11] only the information of end-
effector position in visual space and the robot’s joint angles and velocities are needed in the
synthesis of the controller. In Ref. [12], the controller is designed without requiring the
information of the task-space and joint-space velocity. Theoretically, all the mentioned
methods can achieve task-space trajectory tracking control objects under both kinematic
and dynamic uncertainties. But, few of those papers make any further discussions on the
explicit role each designed parameter performs in the closed-loop behaviors, which is
critically important for the real application of those controllers.
Backstepping technique provides a systematic closed loop construction means of Lyapunov

function to a broad class of strict-feedback nonlinear systems. Due to its simple cofiguration and
ease of implementation, this control strategy is widely applied to the various control systems,
such as output feedback control of nonlinear systems [14,15], control of electrohydraulic servos
systems [16], spacecraft slew maneuver problems [17] and so on. Recently, in some research
literatures, a novel method to analyze the explicit functions of the designed parameters in
backstepping controllers is developed [18–20]. In Ref. [19], an observer-based backstepping
output control scheme is proposed for stabilizing and controlling a class of uncertain
chaotic systems. Not only the global stability is guaranteed by the proposed controller, but
also the transient and asymptotic tracking performances are quantified as explicit functions
of the design parameters. In Ref. [20], a robust adaptive controller is proposed for uncertain
systems with unknown input time-delay to achieve the asymptotic stable. And the tracking
performance is also qualified as explicit functions of design parameters. With this technique,
transient performance can be established and improved with explicit tuning of design
parameters which helps a lot in obtaining the desired closed-loop behaviors.
In this work, an adaptive backstepping control scheme is developed to achieve the task space

trajectory tracking control objects for robot manipulators in the presence of kinematic/dynamic
uncertainty and external disturbances. Theoretical stabilization is proved and the detailed
functions of tuning parameters in the proposed controller are discussed. Moreover, taking
disturbance torque into consideration, the L2 gain performance analysis is achieved to evaluate
the tracking performance. It is shown that the L2 gain from disturbance torque to controlled
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output can meet the required demand by means of appropriately choosing controller gains. In
addition, this method does not need to measure the joint acceleration which to some extent
ensures the robustness of the proposed controller. The paper is organized as follows: in the
following section, we provide a formal problem statement accompanied by all the governing
equations. In Section 3, we propose control scheme and provide the associated stability analysis
for the resulting closed-loop dynamics. Section 4 presents numerical simulation results, and the
paper is closed with some concluding remarks.

Notions: Through out the paper, let R be the real number and Rn denote the space of real
n-dimensional vector. The norm of a vector x 2 Rn is defined as :x:¼

ffiffiffiffiffiffiffiffi
xTx
p

. The L2-
norm of piecewise continuous, square-integrable function u : ½0,1Þ-Rn is defined as
:u:

L2
¼
R1
0 uðtÞTuðtÞdt.

2. Mathematical model of robot manipulator

The dynamic model for a rigid n-link, serially connected, direct driven revolute robot is
given in joint space as follows [21]:

MðqÞ €qþCðq, _qÞ _qþgðqÞ ¼ sþ sd ð1Þ

where q, _q, €q 2Rn denote joint angle, velocity and acceleration vectors, respectively; MðqÞ 2
Rn�n represents the robot inertial matrix; Cðq, _qÞ _q,gðqÞ and s 2 Rn denote the centripetal-
coriolis force, the gravitational force and control inputs, respectively; sd 2 Rn is the
external disturbance which satisfies :sd:rdd where dd is a known positive constant.

Note that the dynamic model introduced in Eq. (1) has the following properties which
are helpful in subsequent control development and analysis [22]:

Property 1. The positive-definite and symmetric inertia matrix, satisfies the following

inequalities:

m1:f:
2rfTMðqÞfrm2:f:

2
8f 2 Rn ð2Þ

where m1,m2 2 R are known positive bounding constants.

Property 2. The time derivative of the inertia matrix and the centripetal-Coriolis matrix

satisfy the following skew symmetric relationship:

fTð _M ðqÞ�2Cðq, _qÞÞf¼ 0 8f 2 Rn ð3Þ

Property 3. The dynamic model is linear with respect to a set of physical parameters

hd ¼ ½yd1,yd2,. . .,ydp�
T

MðqÞ €qþCðq, _qÞ _qþgðqÞ ¼Ydðq, _q, _q, €qÞhd ð4Þ

where Ydð dÞ 2 Rn�p is called dynamic regressor matrix.

Let x 2 RmðmrnÞ represents a task space vector that is related to the robot joint-space as

x¼ hðqÞ, _x ¼ J _q ð5Þ

where hðqÞ 2 Rm denotes the differentiable forward kinematics of the manipulator, and
JðqÞ9ð@h=@qÞ 2 Rm�n represents the differentiable manipulator Jacobian matrix.
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Property 4. JðqÞ _q is linear in a set of constant parameters hk ¼ ½yk1,yk2,. . .,ykq�
T contained in

the Jacobian matrix

JðqÞ _q ¼Ykðq, _qÞhk ð6Þ

where Ykð dÞ 2 Rm�q is called the kinematic regressor matrix. In the following sections, we
refer these parameters hk as ‘‘kinematic parameters’’ even though they may actually
contain dynamic terms such as link mass in specific robot manipulator systems.
The subsequent development is also based on the assumption that all kinematic

singularities associated with JðqÞ are assumed always to be avoided. For the control
synthesis, the exact kinematic and dynamic parameters are assumed not to be known. The
estimations ĥk,ĥd are adopted to make an approximation of actual physical parameters.
The control objectives are to design adaptive backstepping control law s such that
�
 The tracking error x�xd is globally asymptotically stable when the disturbance torque
sd is assumed to be zero.

�
 When taking the disturbance torque sd into consideration, the L2 gain of the closed loop

system is less than the given value g.
The synthesis of the controller is also based on the assumptions that x,q, _q are
measurable. Specifically, q and _q can be obtained from encoder/tachometer sensors, and x
could be obtained from a camera system.
3. Adaptive backstepping controller design

Backstepping is a recursive Lyapunov-based scheme. The idea of adaptive backstepping
is to design a controller recursively by considering some of the state variables as ‘‘virtual
controls’’ and designing them for intermediate control laws. To give a velar ideal of such
development, the following change of coordinate is made:

z1 ¼ x�xd ð7Þ

z2 ¼ _q�f ð8Þ

where f is the virtual control for system in Eq. (7) to be determined. Careful examination
reveals that z1 actually is the trajectory tracking error. And f can be regarded as a
reference joint velocity. Consequently, z2 is the joint velocity tracking error. To this end,
the proposed control algorithm can be made up of two closed-up controllers: the task-
space trajectory tracking one and the joint-space velocity tracking one. The control
diagram of the whole system is illustrated in Fig. 1.
Note that the trajectory tracking controller is designed for the kinematic subsystem in

Eq. (7), and by assuming the joint velocity as virtual control input and taking the tracking
error as systemic output, the trajectory tracking controller generates a reference velocity f
and a kinematic parameter update law which is designed to deal with the kinematic
parameter uncertainty. Then backstepping the reference joint velocity into the dynamic
subsystem in Eq. (8), the additional control torque and dynamic parameter update law are
derived to achieve the task space trajectory tracking control of robot manipulator system.



Fig. 1. Control diagram of the whole system.
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Step 1: Let the controlled output is defined as

y¼ ½ r1z1 r2s r3z2 �T ð9Þ

where the auxiliary sliding vector s has the form of

s9_z1þaz1 ð10Þ

where a is a positive constant.
Furthermore, the approximate estimation of s can be constructed using joint velocity as

ŝ¼ Ĵ _q� _xdþaz1 ð11Þ

To this end, the estimation error of s is calculated to be

s�ŝ¼Yk
~hk ð12Þ

where ~hk9hk�ĥk.
In the following sections, the adaptive backstepping control scheme is proposed to

accomplish the task space tracking control objective. From robotic kinematics in Eq. (5),
the dynamic equation of the trajectory tracking error can be obtained as

_z1 ¼ Ĵ _qþYk
~hk� _xd ð13Þ

It can be seen that Eq. (13) can be regarded as kinematic subsystem of the robot
manipulator related to the trajectory tracking error where defining joint velocity _q as
control input and tracking error z1 as output. Here, we first design the virtual control f for
the kinematic subsystem.

Choosing Lyapunov function as

V1 ¼
1
2

z1
Tz1 þ

1
2
~hk

T
C�1k

~hkþhTkdiag½lðtÞ�hk ð14Þ

where Ck9diag½kk1,kk2,. . .,kkq� is a positive definite diagonal matrix, and the vector
function mðtÞ is defined as lðtÞ9½m1ðtÞ, m2ðtÞ, . . ., mqðtÞ�

T with initial values set to be positive.
Then the derivative of V1 along with Eq.(13) is given as

_V 1 ¼ zT1 _z1þ
~hk

T
C�1k

_~hkþhTkdiag½ _lðtÞ�hk

¼ zT1 ðĴ _qþYk
~hk� _xdÞ þ ~hT

k C�1k
_~hkþhTkdiag½ _lðtÞ�hk

¼ zT1 ðĴz2þĴ/� _xdÞ� ~h
T
k ðC
�1
k
_̂
hk�YT

k z1Þ þ hTkdiag½ _lðtÞ�hk ð15Þ
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In order to arrange the foregoing equation to be negative definite, the virtual control f
and kinematic parameter update law are chosen

f¼ Ĵ�1ð�az1 þ _xdÞ ð16Þ

_̂
hk ¼ CkðYk

Tz1 þ 2bYk
TsÞ�diag½lðtÞ�ĥk, _lðtÞ ¼ �Ck

�1lðtÞ ð17Þ

where b is a positive constant.
Then, substituting Eqs. (16) and (17) into Eq. (15) yields

_V 1 ¼�azT1 z1 þ zT1 Ĵz2�2b ~hT
k YT

k sþð ~hT
k C�1k diag½lðtÞ�ĥk�hTk C�1k diag½lðtÞ�hkÞ ð18Þ

Noting the fact that

~hT
k C�1k diag½lðtÞ�ĥk�hTk C�1k diag½lðtÞ�hk

¼
Xq

i ¼ 1

1

kki

liðtÞð
~hkiĥki�h2kiÞr�

Xq

i ¼ 1

1

2kki

liðtÞðh
2
ki þ ĥ2kiÞr0 ð19Þ

Finally, the derivative of the candidate Lyapunov function in Eq. (14) satisfies the
following inequality:

_V 1r�azT1 z1 þ zT1 Ĵz2�2b ~hT
k YT

k s ð20Þ

Remark 1. By calculating we can find that

Ĵz2 ¼ Ĵ _q�Ĵ/¼ Ĵ _q� _xdþaz1 ¼ ŝ ð21Þ

This information is helpful in the following controller design procedure.
Step 2: In this step, the purpose is to design the actual control torque to track the given

reference joint velocity f. Differentiating Eq. (8) with respect to time t, we can obtain the
dynamic equation of z2

_z2 ¼ €q� _f ð22Þ

From (4) we have

MðqÞ_z2þCðq, _qÞz2 ¼MðqÞ €qþCðq, _qÞ _qþgðqÞ�MðqÞ _f�Cðq, _qÞf�gðqÞ

¼ sþ sd�Ydðq, _q,f, _fÞhd ð23Þ

Multiply z2 to both sides of Eq. (23), it turns to be

zT2 MðqÞ_z2þzT2 Cðq, _qÞz2 ¼ zT2 ðsþ sd�Ydðq, _q,f, _fÞhdÞ ð24Þ

Choosing Lyapunov function as

V2 ¼V1 þ
1
2

zT2 MðqÞz2 þ
1
2
~hT

d Cd
�1 ~hdþhTd diag mðtÞ½ �hd ð25Þ

where Cd9diag½jd1,jd2,. . .,jdp� is a symmetric positive definite diagonal matrix, and the
vector function mðtÞ is defined as mðtÞ9½m1ðtÞ, m2ðtÞ,. . ., mpðtÞ�

T with initial values set to be
positive. Then the derivative of V2 along with Eq. (22) is given by

_V 2 ¼ _V 1 þ zT2 MðqÞ_z2þzT2 Cðq, _qÞz2� ~h
T
d C�1d

_̂
hdþhTd diag½_mðtÞ�hd

r�azT1 z1�2b ~hT
k YT

k sþzT2 ðĴ
Tz1þsþ sd�Ydðq, _q,f, _fÞhdÞ

þhTd diag½_mðtÞ�hd� ~h
T
d C�1d

_̂
hd ð26Þ
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Designing the adaptive control law as

s¼�ĴTz1�bĴTŝ�Zz2 þ Ydðq, _q,f, _fÞĥd ð27Þ

where Z is a positive constant.
Let the dynamic parameter estimation error vector be defined as

~hd9hd�ĥd ð28Þ

Then Eq. (26) can be rewritten in the following form:

_V 2 ¼�azT1 z1�bŝTŝ�gzT2 z2�2b ~hT
k YT

k s�zT2 Ydðq, _q,f, _fÞ ~hd� ~h
T
d C�1d

_̂
hd

þhTd diag½_mðtÞ�hd þ zT2 sd

¼�azT1 z1�bðs�Yk
~hkÞ

T
ðs�Yk

~hkÞ�gzT2 z2� ~h
T
d ðYdðq, _q,f, _fÞ

Tz2

þC�1d
_̂
hdÞ þ hTd diag½_mðtÞ�hd�2b ~hT

k YT
k sþzT2 sd

¼�azT1 z1�bsTs�bðYk
~hkÞ

T
ðYk

~hkÞ þ zT2 sd�gzT2 z2

� ~hT
d ðYd ðq, _q,f, _fÞ

Tz2C
�1
d
_̂
hdÞ þ hd

Tdiag½_mðtÞ�hd ð29Þ

Eq.(29) implies us to choose the following dynamic parameter update law:

_̂
hd ¼�CdYdðq, _q,f, _fÞ

Tz2�diag½mðtÞ�ĥd , _mðtÞ ¼ �C�1d mðtÞ ð30Þ

Subsisting Eq. (30) into Eq. (29) and using the properties given in Section 2 imply that

~hT
d C�1d diag mðtÞ½ �ĥd�hTd C�1d diag mðtÞ½ �hd

¼
Xp

i ¼ 1

1

jdi

miðtÞð ~hdiĥdi�h2diÞr�
Xp

i ¼ 1

1

2jdi

miðtÞðh
2
di þ ĥ2diÞr0 ð31Þ

The derivative of the candidate Lyapunov function turns out to be

_V 2r�azT1 z1�bsTs�gzT2 z2�bðYk
~hkÞ

T
ðYk

~hkÞ þ z2sd ð32Þ

Before giving the conclusions in this paper, we are introducing two lemmas:

Lemma 1. The following inequalities hold for any vectors a,b 2 Rn

2aTbraTaþ bTb�2aTbraTaþ bTb

Lemma 2. (LaSalle–Yoshizawa) (Krstic et al. [13]) Let x¼ 0 be an equilibrium point of

system _x ¼ f ðx,tÞ and suppose f is locally Lipschitz in x uniformly in t. Let V : Rn-Rþ be a

continuously differentiable, positive definite and radially unbounded function V ðxÞ such that

_V ¼
@V

@x
ðxÞf ðx,tÞr�WðxÞr0, 8tZ0, 8x 2 Rn ð33Þ

where W is a continuous function. Then, all solutions of x¼ f ðx,tÞ are globally uniformly
bounded and satisfy

lim
t-1

WðxðtÞÞ ¼ 0 ð34Þ

In addition, if WðxÞ is positive definite, then the equilibrium x¼ 0 is globally uniformly
asymptotically stable.
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Then we have the following conclusions:

Theorem 1. Given the robotic system described by Eqs. (1) and (5), the control algorithm

given by Eqs. (16) and (27) along with the parameter adaptive laws defined in Eqs. (17) and

(30). If making the assumption that :sd:¼ 0, then
(i)
 the asymptotic tracking is achieved, i.e.
lim

t-1
ðx�xdÞ ¼ 0 ð35Þ
(ii)
 the tracking performance is given byZ 1
0

ðx�xdÞ
T
ðx�xdÞdtr

1

a
V2ð0Þ

Z 1
0

ð _x� _xdÞ
T
ð _x� _xdÞdtr3

kmax Ĵ
T

Ĵ
� �
g

þaþ
1

b

0
@

1
AV2ð0Þ ð36Þ
V2ð0Þ ¼
1 hkð0Þ

TC�1hkð0Þ þ
1hdð0Þ

TC�1 ~hd ð0Þ þ hTdiag½lð0Þ�hk þ hTdiag nð0Þ½ �hd
2 k 2 d k d

Proof (i). Choosing function V2 as the candidate Lyapunov function for the robot
manipulator system. When :sd:¼ 0, from Eq(32) we can obtain

_V 2r�azT1 z1�bsTs�gzT2 z2�bðYk
~hkÞ

T
ðYk

~hkÞ ð37Þ

From Eq. (37) we established that V2 is non-increasing. Hence, z1,z2,ĥk,ĥdare bounded.
Because V2 is a continuously differentiable, positive definite and radially unbounded function.
And function WðxÞ9azT1 z1 þ bsTsþ gzT2 z2 þ bðYk

~hkÞ
T
ðYk

~hkÞ is a positive definite function
with respect to variables z1,s,z2,Yk

~hk. Then by applying Lemma 2, it further follows that
z1, s,z2,Yk

~hk are globally uniformly asymptotically stable which implies that

lim
t-1
ðx�xdÞ ¼ 0 ð38Þ

Proof (ii). From Eq. (37), we also have thatZ 1
0

z1ðsÞ
Tz1ðsÞdsr

1

a
ðV2ð0Þ�V2ð1ÞÞr

1

a
V2ð0Þ ð39Þ

Thus, by setting zið0Þ ¼ 0, i¼ 1,2, we obtain

V2ð0Þ ¼
1
2
~hkð0Þ

TC�1k
~hkð0Þ þ

1
2
~hdð0Þ

TC�1d
~hdð0Þ þ hTkdiag lð0Þ

� �
hk þ hTddiag mð0Þ½ �hd ð40Þ

which is a decreasing function with respect to each elements of matrix Ck,Cd , an increasing
function with respect to each elements of vectors lð0Þ,mð0Þ. Resulting from Eqs. (39) and
(40), this means that the L2 norm of the tracking error isZ 1

0

ðx�xdÞ
T
ðx�xdÞdtr

1

a
1

2
~hkð0Þ

TC�1k
~hkð0Þ þ

1

2
~hd ð0Þ

TC�1d
~hdð0Þ

�

þhTkdiag½lð0Þ�hk þ hTd diag½mð0Þ�hd

�
ð41Þ

From Eqs. (7), (8) and (16), we getZ 1
0

ð _x� _xdÞ
T
ð _x� _xdÞdt¼

Z 1
0

ðĴ _qþYk
~hk� _xdÞ

T
ðĴ _qþYk

~hk� _xdÞdt
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¼

Z 1
0

ðĴz2þĴ jþYk
~hk� _xdÞ

T
ðĴz2þĴjþYk

~hk� _xd Þdt

¼

Z 1
0

ðĴz2�az1 þ Yk
~hkÞ

T
ðĴz2�az1 þ Yk

~hkÞdt

¼

Z 1
0

ðĴz2Þ
T
ðĴz2Þ þ a2z1

Tz1 þ ðYk
~hkÞ

T
ðYk

~hkÞ�2ðĴz2Þ
T
ðaz1Þ

þ2ðĴz2Þ
T
ðYk

~hkÞ�2ðaz1Þ
T
ðYk

~hkÞdt ð42Þ

From Lemma 1 we can further conclude thatZ 1
0

ð _x� _xdÞ
T
ð _x� _xdÞdtr3

Z 1
0

ðĴz2Þ
T
ðĴz2Þ þ a2zT1 z1 þ ðYk

~hkÞ
T
ðYk

~hkÞ

� �
dt ð43Þ

Similar to Eq. (39), the following results can be obtained thatZ 1
0

zT2 z2 dtr
1

g
V2ð0Þ ð44Þ

Z 1
0

ðYk
~hkÞ

T
ðYk

~hkÞr
1

b
V2ð0Þ ð45Þ

Thus, using the property of norm, it can be obtainedZ 1
0

ð _x� _xdÞ
T
ð _x� _xdÞdtr3

Z 1
0

ðz2Ĵ
TĴz2þa2zT1 z1 þ ðYk

~hkÞ
T
ðYk

~hkÞÞdt

r3

Z 1
0

ðlmaxðĴ
TĴÞzT2 z2 þ a2zT1 z1 þ ðYk

~hkÞ
T
ðYk

~hkÞÞdt

r3
lmax ĴT Ĵ

� �
g

þaþ
1

b

0
@

1
AV2ð0Þ ð46Þ

Thus finish the proof.

Theorem 2. Given the robotic system described by Eqs. (1) and (5), the control algorithm

given by Eqs. (16) and (17) along with the parameter adaptive laws defined in Eqs. (17) and

(30), when :sd:a0, if the following constraints on the controller parameters holds

aZr21
bZr22
ZZr23 þ 1=ð4g2Þ

8><
>: ð47Þ

The close loop system is uniformly bounded sable. And the following disturbance
rejection inequality holds:

:y:
L2

rg:sd:L2
þ

ffiffiffiffiffiffiffiffiffiffiffi
V2ð0Þ

p
ð48Þ

Proof. For :sd:a0, we can define the function H as

H ¼ _V 2 þ yTy�g2sd
Tsd ð49Þ
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By calculating we can find that

Hr�azT
1 z1�bsTs�ZzT2 z2 þ r21z

T
1 z1 þ r22s

Tsþ r23z2
Tz2 þ zT2 sd�g2sTd sd

r�ða�r21Þ:z1:
2
�ðb�r22Þ:s:2� Z�r23�

1

4g2

� 	
:z2:

2
�:

1

2g
z2�gsd:

2
ð50Þ

If the parameters a,b,Z are chosen to satisfy the inequalities (47), then we can get the
following dissipative inequality:

_V 2rg2sTd sd�yTy ð51Þ

Integrating both sides over ½0,s� yieldsZ t

0

yTydtrg2
Z t

0

sTd sd dt�½V2ðtÞ�V2ð0Þ� ð52Þ

Thus

:y:
L2

rg:sd:L2
þ

ffiffiffiffiffiffiffiffiffiffiffi
V2ð0Þ

p
ð53Þ

where we used the facts that V2ðxÞZ0 and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2
p

raþ b for nonnegative numbers a and b.

Remark 2. From the proof of Theorem 1, we can find that Yk
~hk also converges to zero. In

addition, if the persistent excitation conditions is satisfied, the convergence of ĥk to hk can
be achieved [10]. But this is not true for the dynamic parameters hd as we cannot achieve
the same results that as time evolves, Yd

~hd converges to zero. So we can only get the
conclusion that ĥd is bounded which is proved in Theorem 1.

Remark 3. From Theorem 1, the following conclusions can be obtained:

�
 The tracking performance depends on the initial estimate errors ~hkð0Þ, ~hdð0Þ and the

explicit design parameters lð0Þ,mð0Þ. The smaller the values ~hkð0Þ, ~hdð0Þ, lð0Þ,mð0Þ, the
better the transient performance would be.R

�
 The bound for

1

0 ðx�xdÞ
T
ðx�xdÞdt is an explicit function of design parameters and

thus computable. We can decrease the effects of the initial error on the transient
performance by increasing the adaption gain Ck,Cd .

�
 To improve the tracking error performance we can also increase the gain a. However,

increasing a would influence the performance of
R1
0 ð _x� _xdÞ

T
ð _x� _xd Þdt. Thus, it is

suggested fixing the gain a for some acceptable value and adjust the other gains such as
b,Z to improve the transient performance.

Remark 4. The selection of controller parameters has direct relations with disturbance
suppression performance index g. The smaller the g, the better the disturbance suppression
effects would be. However, this would result in a greater control torque. So, by
appropriately choosing controller parameters, the compromise between control torque and
control precision can be obtained.

Remark 5. From the expression of the control law in Eq. (27) we can find that the
proposed controller does not need to measure the joint acceleration, thus the robustness
and disturbance rejection ability to the controller are enhanced.

Remark 6. The adoption of the functions lðtÞ and mðtÞ increases the stability of the
parameter estimation procedure, which to some extent avoids the singularity of the inverse
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of the Jacobian matrix appearing. In the proposed controller, the kinematic controller’s
update law containing the inverse of the estimated Jacobian matrix which is assumed to
exist when the robot manipulator execute tasks. To reduce the possibility of the singular
phenomenon, the project function in Ref. [8] can be used to constrain the range of
parameter estimation. But the exact upper and lower bound is needed. Alternatively, the
singularity-robust inverse of the approximate Jacobian matrix methods in Ref. [23] can be
adopted to bound the virtual input f.

4. Numerical simulation

To study the effectiveness and performance of the proposed formation control
strategies, the detailed response is numerically simulated using the set of governing
equations of motion Eqs. (1) and (5) in conjunction with the proposed control laws
[Eqs. (17) and (31)]. Here, a 2-link planar space robot manipulator is adopted to make
a numerical simulation. The configuration of the model is illustrated in Fig. 2.

The physical parameters of this space robot are listed in Table 1, where mi and Ii are the
mass and the moment of inertia of the ith rigid body, respectively, ai and bi are shown as Fig. 2

In the simulations, the desired end-effector trajectory of the planar manipulator is
chosen to be a circle in inertia space, i.e.

xd ¼ ½1:8cosðtÞ, 1:8sinðtÞ�T ð54Þ

Moreover, to verify the performance of the proposed Adaptive Backstepping Trajectory
Tracking Controller (ABTTC), the Approximate Jacobian Adaptive Controller (AJAC)
proposed in Ref. [9] is adopted to make a comparison. The controller parameters in
Ref. [9] is chosen as K v ¼ diag½2,2�, Kp ¼ diag½10,10�, K ¼ diag½8,8�, Lk ¼ diag½0:2,0:2�,
Ld ¼ diag½0:5,0:5�, a¼ 0:01. In addition, for all numerical examples presented in this
section, the position of the center of mass of the spacecraft is set as rc0 ¼ ½ 0 0 �T, the initial
configurations are set as q0ð0Þ ¼ 0, q1ð0Þ ¼ p=3 and q2ð0Þ ¼ �2p=3, respectively; the initial
velocity is _q0ð0Þ ¼ 0, _q1ð0Þ ¼ 0and _q2ð0Þ ¼ 0, respectively. Accordingly, the initial kinematic
Fig. 2. Configuration of the simulation model.



Table 1

Physical parameters of the space robot manipulator.

Link ai ðmÞ bi ðmÞ mi ðkgÞ Ii ðkg m
2Þ

Base – 0.5 40 6.667

1 0.5 0.5 4 0.333

2 0.5 0.5 3 0.250

Table 2

Controller parameters used for numerical analysis.

Control gains mið0Þ ði¼ 1,2,3Þ nið0Þ ði¼ 1,. . .,6Þ Ck Cd a b Z
Value 1 0.01 2I 4I 1.5 15 100
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and dynamic parameter estimates are chosen as

ĥkð0Þ ¼ 0:8 1:3 1:5
� �T

ĥd ð0Þ ¼ 3:0 1:0 1:0 20:0 4:0 1:0
� �T

ð55Þ

The actual values of the kinematic parameter and dynamic parameter are obtained
based on the physical parameter given in Table 1

hk ¼ 0:4225 0:8936 0:9681
� �T

hd ¼ 2:1277 1:3404 0:6383 12:9096 4:7532 0:9521
� �T

ð56Þ

To demonstrate the feasibility of the proposed controller, two different situations are
considered in the simulation: (1) without external disturbance, and (2) with the external
disturbance. In both cases, the design parameters of the proposed controller are determined are
given in Table 2.

4.1. Case 1: disturbance-free

The simulation results are given in the Figs. 3–7. Fig. 3 shows desired and actual paths of
the FFSR end-effector when tracking the circle xd . The time responses of the FFSR end-
effector tracking errors, control torque, kinematic and dynamic parameter estimates are
given in Figs. 4–7, respectively.
When carefully observing the tracking error depicted in Fig. 4(a), we may find that the

tracking error converges to zero at the time of 4 s and further after about a time period of 1 s of
transient process, the tracking error stays on the zero line permanently. But in Fig. 4(b), it takes
almost 30 s for the tracking error to converge to zero and the tracking error oscillates several
times before it finally becomes stable. These are also true for the control torque, kinematic and
dynamic parameter estimations in Figs. 5–7. All the time response of the control torque,
kinematic and dynamic parameter estimation under AJACmethod has slower convergence rates
and greater oscillation amplitudes when compared with ABTTC method proposed in the paper.
Additionally, from Figs. 6 and 7, it can be seen that the estimated kinematic parameters
eventually converge to their actual values. However, this is not true for dynamic parameters. But
compared with the kinematic parameter estimation procedure, the estimations of dynamic
parameters turn into the stable state much quicker than those of the kinematic parameters. The
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Fig. 3. Path of the end effector: (a) ABTTC method and (b) AJAC method.
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reason may lie in the fact that the kinematic parameter estimation is directly affected by the end
effector tracking error.

4.2. Case 2: considering disturbance

In this case, the following disturbance is taken into consideration, i.e.

sd1 ¼ ½20þ 5cosð20tÞ þ 5e�3t,15þ 5sinð30tÞ þ 5e�2t,15þ 5sinð40tÞ þ 5e�t�T ð57Þ
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If the parameters of the controlled output are chosen as r1 ¼ 1, r2 ¼ 1, r3 ¼ 1, and the
L2 gain is set as g¼ 0:01, then we can see that the foregoing controller parameters still
satisfy the guidance of Eq. (36). The simulation results are presented in Figs. 8 and 9. From
Fig. 9, at first glance, we can find that under sinusoid disturbance the system using ABTTC
is still stable, but this is not true for AJAC; actually, in the construction of AJAC in Ref.
[9], the author fails to consider the external disturbance. Furthermore, from Fig. 8(a), we



0 5 10 15 20
0

0.5

1

0 5 10 15 20
0.5

1

1.5

0 5 10 15 20
0.5

1

1.5

t (sec)

0 10 20 30 40
0

0.5

1

0 10 20 30 40
0.5

1

1.5

0 10 20 30 40
0

2

4

t (sec)

� k
3

� k
2

� k
1

� k
3

� k
2

� k
1

Fig. 6. Time response of kinematic parameter estimation (yk-dashed, ŷk-solid): (a) ABTTC method and (b) AJAC
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may find that the tracking performance achieves the same results as the one without
disturbance. However, when amplify the tracking error in Fig. 9 to see the details hidden
behind and compared with Fig. 4(a), we may find that when there exist no disturbance the
tracking converges to zero asymptotically, but when sinusoidal disturbance exists, the
tracking error comes out. But the magnitude of the tracking error is as small as 0.005,
which to some extent proves the disturbance suppression ability of the proposed controller.

Summarizing all the cases (with and/or without disturbance), it is noted that the
proposed controllers design method can significantly improve the system performance
without disturbance in both theory and simulations. Also, with disturbance case, the
proposed methods have desired results. In addition, extensive simulations were also done
using different control parameters, disturbance inputs and even combination of the desired
trajectory. These results show that in the closed-loop system the tracking target is
accomplished in spite of these undesired effects in the system. Moreover, the flexibility in
the choice of control parameters can be utilized to obtain desirable performance while
meeting the constraints on the system. These control approaches provides the theoretical
basis for the practical application of the advanced control theory to robot manipulator
control system.

5. Conclusions

In this paper, we presented a tracking control scheme based on adaptive backstepping
for a space robot manipulator system. Kinematic/dynamic uncertainty and external
disturbance with an unknown bound were employed in the development of the adaptive
parameter update laws. By defining appropriate Lyapunov function, asymptotical
stabilization is guaranteed; and also taking the external disturbance into consideration,
the dissipative equation is used to ensure the L2 gain from disturbance to controlled output
is less than the required value. In addition, the function of controller parameters is analyzed
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carefully which provides application instructions and a deeper insight of the controller. The
numerical results clearly establish the robustness of the proposed control methodologies in
tracking a desired trajectory in the presence of model uncertainties, time-varying disturbances.
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While the simulation results presented in this paper merely illustrate formulations for the
particular trajectories tracking, further testing would be required to reach any conclusions about
the efficacy of the control and adaptation laws for tracking arbitrary trajectory. In addition, this
control scheme places no restriction on the magnitude of the desired control, and the design with
explicitly considering the actuator limit is also being investigated. Future work is planned to
study the digital implementation of such control scheme on hardware platforms for attitude
control experimentation.
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