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Remote State Estimation with Stochastic Event-triggered
Sensor Schedule and Packet Drops

Liang Xu, Yilin Mo and Lihua Xie

Abstract—This paper studies the remote state estimation problem
of linear time-invariant systems with stochastic event-triggered sensor
schedules in the presence of packet drops between the sensor and the
estimator. Due to the existence of packet drops, the Gaussianity at
the estimator side no longer holds. It is proved that the system state
conditioned on the available information at the estimator side is Gaussian
mixture distributed. The minimum mean square error (MMSE) estimator
can be obtained from a bank of Kalman filters. Since the optimal
estimators require exponentially increasing computation and memory
with time, sub-optimal estimators to reduce computational complexities
by limiting the length and numbers of hypotheses are further provided.
In the end, simulations are conducted to illustrate the performance of
the optimal and sub-optimal estimators.

I. INTRODUCTION

Sensor networks have wide applications in environment and habitat
monitoring, industrial automation, smart buildings, etc. In many ap-
plications, sensors are battery powered and are required to reduce the
energy consumption to prolong their service life. Sensor scheduling
algorithms are therefore proposed as an efficient method by scheduled
transmissions to reduce the communication frequency to prolong the
service time of sensor devices.

Sensor scheduling algorithms can be roughly categorized as off-
line schedules and event-triggered schedules. The off-line schedules
are designed based on the communication frequency requirement
and the statistics of the systems [1–3]. Compared with off-line
schedules, event-triggered schedules depend on both the statistics and
the realization of the system, which are expected to achieve better
performance than off-line ones. Many triggering rules have been
proposed in the literature based on the condition that, the estimation
error [4], error in predicated output [5], functions of the estimation
error [6, 7], or the error covariance [8], exceeds a given threshold.
For example, a measurement innovation based event-triggered sensor
scheduling scheme is proposed to reduce the communication rate in
the remote state estimation problem in [6]. The novelty is to use the
hold of transmission event to deliver information about the sensor
measurement. However, since the innovation is not Gaussian, only
sub-optimal estimators can be obtained. Stochastic event-triggered
sensor scheduling algorithms are further proposed in [7] to handle
the non-Gaussian problem. Both open-loop and closed-loop schedules
are proposed, and it is shown that the conditional distributions of
the system state are Gaussian. As a result, closed-form minimum
mean square error (MMSE) estimators are obtained. Similar non-
Gaussianity phenomenon could appear when transmit power control
is used in sensor networks [9]. To overcome the problem, a transmit
power controller based on a specific quadratic form of measurement
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innovations is carefully designed in [9] to preserve the Gaussianity
of a posterior state distribution, which facilities the MMSE estimator
design and performance analysis.

Wireless communications are mostly utilized in sensor networks,
and packet drops are inevitable in wireless communications. There-
fore, it is necessary to study how packet drops affect sensor schedul-
ing algorithms [3, 10]. It should be noted that, for off-line schedulers
and estimation error covariance based event-triggered schedulers,
there is no need to distinguish between the channel loss event and the
hold of transmission event when designing estimators. As long as the
estimator receives the packet, it can conduct the measurement update
to improve the estimate and vice versa. However, the case is different
for the stochastic event-triggered sensor scheduling algorithms in [7]
where the sensor measurement is used as the trigger criterion and
the hold of transmission event contains information about the sensor
measurement. In the presence of possible channel losses, the esti-
mator cannot decide whether the non-reception of the packet can be
attributed to the sensor measurement or the channel loss. If it is due to
that the sensor measurement lies below the given threshold, then this
information can be leveraged to improve the estimate. However, if it
is caused by the channel loss, the estimator will have no information
about the sensor measurement and no update will be carried out.
This fact complicates the optimal estimator design. Furthermore, it is
proved that, in the presence of channel losses, the Gaussian properties
with the stochastic event-triggered sensor scheduling algorithms in [7]
no longer hold [11].

This paper considers the same problem setting as in [7] with the
additional consideration of the presence of packet drops between the
sensor and the estimator. We try to derive the MMSE estimator in
the case that the estimator has no knowledge about the channel loss
events and only knows the channel loss rate. The main contributions
are as follows. Firstly, we show that the conditional distributions
of the system state at the estimator side are mixture Gaussian.
Secondly, recursive MMSE estimators are derived. Thirdly, sub-
optimal estimation algorithms to reduce computational complexities
are provided.

The optimal estimator design has been presented in [12]. This paper
contains new contents about sub-optimal estimator designs with fixed
computation requirements. This paper is organized as follows. The
problem formulation is given in Section II. The optimal estimator
is studied in Section III. Tow sub-optimal estimators with fixed
computation requirements are proposed in Section IV, respectively.
Simulation comparisons are provided in Section V. This paper ends
with some concluding remarks in Section VI.

Notation: All matrices and vectors are assumed to be of appropriate
dimensions that are clear from the context. R,Rn,Rm×n represent
the sets of real scalars, n-dimensional real column vectors and m×n-
dimensional real matrices, respectively. N denotes the set of natural
numbers. Nx(x̄,Σ) denotes the Gaussian probability density function
of the random variable x with the mean x̄ and the covariance matrix
Σ. f(x) (Pr(x)) denotes the probability density function (probability)
of the random variable x. f(x|y) (Pr(x|y)) denotes the probability
density function (probability) of the random variable x conditioned
on the event that Y = y. E{·} denotes the expectation operator. A′,
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A−1 and |A| are the transpose, the inverse and the determinant of
matrix A, respectively. A > 0 means that the matrix A is positive-
definite. The term x′Ax for symmetric matrix A and vector x is
abbreviated as x′A(∗).

II. PROBLEM FORMULATION

In this paper, we are interested in the remote state estimation prob-
lem with stochastic event-triggered sensor schedule in the presence
of packet drops depicted in Fig. 1. The linear process is

xk+1 = Axk + wk,

yk = Cxk + vk,

where xk ∈ Rn is the process state; yk ∈ Rm is the measurement
output; wk and vk are the process and measurement noises. We
assume that {wk}k≥0 and {vk}k≥0 are white Gaussian processes
with covariance matrices Q and R, respectively. Moreover, the initial
system state satisfies x0 ∼ Nx0(0,Σ0) and is independent with wk
and vk.

Process Sensor Estimator

xk yk x̂ksk γk

Fig. 1. Remote state estimation with stochastic event-triggered sensor
schedule in the presence of packet drops

After receiving yk, the sensor follows the stochastic event-triggered
schedule [7] to decide whether to transmit yk to the estimator or not.
Let sk denote the decision variable by the sensor. When sk = 1,
the sensor transmits yk to the estimator and sk = 0, otherwise. The
stochastic event-triggered sensor schedule [7] operates as follows. At
time k, the sensor randomly generates a variable ζk from the uniform
distribution on [0, 1]. Then ζk is compared with e−y

′
kY yk , where

Y > 0. The sensor schedules transmissions based on the following
rule

sk =

{
0, if ζk ≤ e−y

′
kY yk ,

1, if ζk > e−y
′
kY yk .

(1)

It is shown in [7] that the design (1) together with the random variable
ζk can avoid the nonlinearity introduced by the truncated Gaussian
prior conditional distribution of the system state in deterministic
event-triggered schedule in [6].

Remark 1. There are several reasons for not implementing the
Kalman filter at the sensor side. The first reason is that the sensor
might be primitive [7], so it does not have a sufficient computation ca-
pability to run a local Kalman filter. Secondly, the system parameters
might not be available to the sensor. Thirdly, in decentralized settings
where there are multiple sensors measuring the same process, only
the fusion center which has access to all the sensor measurements can
run the Kalman filter. In the end, the state dimension might be larger
than the output dimension. Therefore, it reduces the communication
cost to transmit the sensor output and perform the Kalman filter at
the estimator side.

Remark 2. In this paper, we only consider the open-loop stochastic
event-triggered sensor schedule. The results for the closed-loop
stochastic event-triggered sensor schedule [7] can be obtained in
a similar way.

The communication channel between the sensor and the estimator
suffers from i.i.d. packet drops, which are described by the i.i.d.
stochastic process {γk}k≥0. When γk = 1, the transmission is
successful, and γk = 0, otherwise. Moreover, we assume γk ∈ {0, 1}

has a Bernoulli distribution with Pr(γk = 0) = p. Therefore, the
following information is available to the estimator at time k

Ik = {s0γ0, . . . , skγk, s0γ0y0, . . . , skγkyk} (2)

with I−1 = ∅.
When there are no transmission packet drops, the posterior dis-

tribution f(xk|Ik) is shown to be Gaussian in [7]. However, in the
presence of packet drops, the Gaussian property no longer holds [11].
In subsequent sections, we will show that in the presence of
packet drops, the posterior distribution f(xk|Ik) is mixture Gaussian
with exponentially increasing components with time. Moreover, the
MMSE estimator is derived.

III. OPTIMAL ESTIMATOR

In this section, we try to derive the MMSE estimator in the
presence of packet drops between the sensor and the estimator. First
of all, the following notions are defined. For any given k ∈ N and
i ∈ N with 0 ≤ i ≤ 2k+1 − 1, define the event

Γik = {γk = bk, . . . , γ0 = b0},

where bk is the (k+ 1)-th element of the binary expansion of i, i.e.,
i = bk2k + bk−12k−1 + . . .+ b020. Therefore, Γik denotes a packet
drop sequence {γk, . . . , γ0} specified by the index i. For any given
i ∈ N and k ∈ N, let

i−k =

{
i, if i < 2k,

i− 2k, if i ≥ 2k.

Therefore, i−k is the index of the sub-sequence {γk−1, . . . , γ0}
extracted from the sequence {γk, . . . , γ0} specified by the index i.
From the law of total probability, we have that

f(xk|Ik) =

2k+1−1∑
i=0

f(xk|Γik, Ik) Pr(Γik|Ik), (3)

f(xk|Ik−1) =

2k−1∑
i=0

f(xk|Γik−1, Ik−1) Pr(Γik−1|Ik−1). (4)

We call Γik the hypothesis, and Pr(Γik|Ik) the hypothesis proba-
bility. The conditional distribution f(xk|Γik, Ik) can be shown to be
Gaussian. Therefore, f(xk|Ik) is mixture Gaussian.

Remark 3. The Gaussian mixture phenomenon also appears in other
control and estimation problems. For example, the estimation of
Markov jump linear systems with unknown jump mode [13] and the
estimation of linear systems with unknown control inputs [14]. In
general, if there are hidden variables in the control and estimation
problem, the resulting conditional distribution is a mixture distribu-
tion from the law of total probability.

It should be noted that in (3), there are 2k+1 hypotheses at time
k. However, certain hypotheses might be impossible. For example,
when γksk = 1, we know that γk = 1. Therefore, the hypotheses
with γk = 0 should be excluded. Nevertheless, for such case, we
can show that Pr(Γik|Ik) = 0. In principle, the set of hypotheses at
time k is determined by the received signals {γksk, . . . , γ0s0}, which
however is stochastic and cannot be determined in a prior. Therefore,
in the sequel, we always express f(xk|Ik) as a summation of 2k+1

hypotheses as in (3) to simplify the description.
In the sequel, we will recursively derive f(xk|Γik, Ik) and

Pr(Γik|Ik). Then in view of (3) and (4), the MMSE estimator can
be obtained. The following results are required and presented first.

f(xk|Γik, Ik−1) = f(xk|Γ
i−
k
k−1, Ik−1), (5)
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since {γk} is i.i.d. and knowing γk only cannot help to improve the
knowledge about xk. We then have the following result.

Lemma 4.

f(xk|Γik, Ik) = Nxk (x̂ik|k, P
i
k|k), 0 ≤ i ≤ 2k+1 − 1

f(xk|Γik−1, Ik−1) = Nxk (x̂ik|k−1, P
i
k|k−1), 0 ≤ i ≤ 2k − 1

where x̂ik|k, P
i
k|k, x̂

i
k|k−1, P

i
k|k−1 satisfy the following recursion.

Time update:

x̂ik|k−1 = Ax̂ik−1|k−1,

P ik|k−1 = AP ik−1|k−1A
′ +Q.

Measurement update:
• For i < 2k,

x̂ik|k = x̂ik|k−1, P
i
k|k = P ik|k−1. (6)

• For i ≥ 2k,

x̂ik|k = (I −Ki−
k
k C)x̂

i−
k
k|k−1 +K

i−
k
k skγkyk, (7)

P ik|k = P
i−
k
k|k−1 −K

i−
k
k CP

i−
k
k|k−1, (8)

K
i−
k
k = P

i−
k
k|k−1C

′[CP
i−
k
k|k−1C

′ +R+ (1− skγk)Y −1]−1 (9)

with initial conditions

x̂0
0|−1 = 0, P 0

0|−1 = Σ0.

Proof. The proofs of the initialization and the time update are
straightforward. The measurement update (6) follows from the fact
that for i < 2k, we have γk = 0. Therefore, no new information is
available and the measurement update is not needed.

The measurement update (7), (8) and (9) follow from the fact that
for i ≥ 2k, we have γk = 1. Therefore, the measurement update is
the same as [7].

Next we calculate the probabilities of αik|k−1 = Pr(Γik|Ik−1),
αik|k = Pr(Γik|Ik) and have the following result.

Lemma 5. αik|k−1 and αik|k with 0 ≤ i ≤ 2k+1 − 1 satisfy the
following recursion.

Time update:
• For i < 2k,

αik|k−1 = pαik−1|k−1. (10)

• For i ≥ 2k,

αik|k−1 = (1− p)αi
−
k
k−1|k−1. (11)

Measurement update:

αik|k =
Pr(skγk|Γik, Ik−1)αik|k−1∑2k+1−1

j=0 Pr(skγk|Γjk, Ik−1)αjk|k−1

,

where
• for j < 2k,

Pr(skγk|Γjk, Ik−1) = 1− skγk.

• for j ≥ 2k,

Pr(skγk|Γjk, Ik−1) = skγk +
1− 2skγk√

|(CP j
−
k
k|k−1C

′ +R)Y + I|

× e−
1
2

(Cx̂
j
−
k

k|k−1
)′[Y−1+(CP

j
−
k

k|k−1
C′+R)]−1Cx̂

j
−
k

k|k−1

with the initial condition

α0
0|−1 = p, α1

0|−1 = 1− p.

Proof. Time update: (10) follows from the fact that for i < 2k, we
have γk = 0. Therefore

αik|k−1 = Pr(Γik−1, γk = 0|Ik−1)

= Pr(γk = 0) Pr(Γik−1|Ik−1)

= pαik−1|k−1.

On the other hand, (11) follows from the fact that for i ≥ 2k, we
have γk = 1. Therefore

αik|k−1 = Pr(Γ
i−
k
k−1, γk = 1|Ik−1)

= Pr(γk = 1) Pr(Γ
i−
k
k−1|Ik−1)

= (1− p)αi
−
k
k−1|k−1,

which is (11).
Measurement update: Since

αik|k = Pr(Γik|Ik)

= Pr(Γik|skγk, skγkyk, Ik−1)

= Pr(Γik|skγk, Ik−1)

=
Pr(skγk|Γik, Ik−1) Pr(Γik|Ik−1)

Pr(skγk|Ik−1)

=
Pr(skγk|Γik, Ik−1) Pr(Γik|Ik−1)∑2k+1−1

j=0 Pr(skγk|Γjk, Ik−1) Pr(Γjk|Ik−1)

=
Pr(skγk|Γik, Ik−1)αik|k−1∑2k+1−1

j=0 Pr(skγk|Γjk, Ik−1)αjk|k−1

,

where the third equality follows from the fact that when skγk = 0,
skγkyk = 0, it is useless to know skγkyk; when skγk = 1, knowing
skγkyk is equivalent to know yk, which is also useless in predicting
Γik. Next we will show how to calculate Pr(skγk|Γik, Ik−1).

When i < 2k, since γk = 0, we have that skγk ≡ 0. Therefore

Pr(skγk|Γik, Ik−1) = 1− skγk. (12)

When i ≥ 2k, we have γk = 1. Let M
i−
k
k = CP

i−
k
k|k−1C

′ +R, we
then have

Pr(skγk|Γik, Ik−1) = Pr(sk|Γik, Ik−1)

=

∫
Rm

Pr(sk|yk,Γik, Ik−1)f(yk|Γik, Ik−1)dyk

=

∫
Rm

Pr(sk|yk)f(Cxk + vk|Γik, Ik−1)dyk

(a)
=

∫
Rm

(
sk(1− 2e−

1
2
y′kY yk ) + e−

1
2
y′kY yk

)
× f(Cxk + vk|Γ

i−
k
k−1, Ik−1)dyk

=

∫
Rm

(
sk(1− 2e−

1
2
y′kY yk ) + e−

1
2
y′kY yk

)
×Nyk (Cx̂

i−
k
k|k−1,M

i−
k
k )dyk

= sk + (1− 2sk)

∫
Rm

e−
1
2
y′kY ykNyk (Cx̂

i−
k
k|k−1,M

i−
k
k )dyk

= sk +
1− 2sk√

(2π)m|M i−
k
k |

×
∫
Rm

e
− 1

2
y′kY yk−

1
2

(yk−Cx̂
i
−
k

k|k−1
)′(M

i
−
k

k
)−1(∗)

dyk
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= sk +
1− 2sk√

(2π)m|M i−
k
k |

e
− 1

2
(Cx̂

i
−
k

k|k−1
)′(M

i
−
k

k
)−1(∗)

×
∫
Rm

e
− 1

2
y′k[Y+(M

i
−
k

k
)−1]yk+(Cx̂

i
−
k

k|k−1
)′(M

i
−
k

k
)−1ykdyk

(b)
= sk +

1− 2sk√
(2π)m|M i−

k
k |

e
− 1

2
(Cx̂

i
−
k

k|k−1
)′(M

i
−
k

k
)−1(∗)

×

√√√√ (2π)m

|Y + (M
i−
k
k )−1|

× e
1
2

(Cx̂
i
−
k

k|k−1
)′(M

i
−
k

k
)−1[Y+(M

i
−
k

k
)−1]−1(M

i
−
k

k
)−1Cx̂

i
−
k

k|k−1

(c)
= sk +

1− 2sk√
|(M i−

k
k )Y + I|

e
− 1

2
(Cx̂

i
−
k

k|k−1
)′[Y−1+(M

i
−
k

k
)]−1(∗)

, (13)

where (a) follows from (5); (b) follows from the Gaussian integral
and (c) follows from the matrix inversion lemma.

The following notions are defined.

x̂k|k = E {xk|Ik} , x̂k|k−1 = E {xk|Ik−1} ,
ek|k = xk − x̂k|k, ek|k−1 = xk − x̂k|k−1,

Pk|k = E
{
ek|ke

′
k|k
}
, Pk|k−1 = E

{
ek|k−1e

′
k|k−1

}
.

In view of Lemma 4 and Lemma 5, the following is straightforward
from (3) and (4).

Theorem 6. With the stochastic event-trigger sensor schedule and
in the presence of packet drops, the conditional probability density
functions (pdfs) of xk are Gaussian mixture, i.e.,

f(xk|Ik) =

2k+1−1∑
i=0

αik|kNxk (x̂ik|k, P
i
k|k),

f(xk|Ik−1) =

2k−1∑
i=0

αik−1|k−1Nxk (x̂ik|k−1, P
i
k|k−1),

where x̂ik|k, P
i
k|k, x̂

i
k|k−1, P

i
k|k−1, α

i
k|k, α

i
k|k−1 are computed in

Lemma 4 and Lemma 5. Moreover, the optimal estimate with the
corresponding estimation error covariance can be calculated by the
Gaussian sum filter [15] and are given by

x̂k|k =

2k+1−1∑
i=0

αik|kx̂
i
k|k,

Pk|k =

2k+1−1∑
i=0

αik|k

(
P ik|k + (x̂ik|k − x̂k|k)(x̂ik|k − x̂k|k)′

)
,

x̂k|k−1 =

2k−1∑
i=0

αik−1|k−1x̂
i
k|k−1,

Pk|k−1 =

2k−1∑
i=0

αik−1|k−1(P ik|k−1

+(x̂ik|k−1 − x̂k|k−1)(x̂ik|k−1 − x̂k|k−1)′).

We can verify that when there are no packet drops, the optimal
estimator degenerates to the one given in [7]. Besides, the time update
of the MMSE estimator satisfies the following simple recursion

x̂k|k−1 =

2k−1∑
i=0

αik−1|k−1Ax̂
i
k−1|k−1 = Ax̂k−1|k−1,

Pk|k−1 =

2k−1∑
i=0

αik−1|k−1(AP ik−1|k−1A
′ +Q

+A(x̂ik−1|k−1 − x̂k−1|k−1)(x̂ik−1|k−1 − x̂k−1|k−1)′A′)

= APk−1|k−1A
′ +Q.

However, there are no such simple relations for the measurement
update.

It is immediate from Theorem 6 that the optimal estimator requires
exponentially increasing computation and memory with time, which
cannot be applied to practical applications. Therefore, in the follow-
ing, two sub-optimal estimators with constant resource requirements
are proposed.

IV. SUB-OPTIMAL ESTIMATORS

In this section, we propose two sub-optimal estimators with
constant resource requirements: the fixed memory estimator and the
particle filter. The two sub-optimal estimators are obtained by limiting
the hypothesis length and numbers, respectively. In the following, we
will describe the two sub-optimal estimators in detail.

A. Fixed Memory Estimator

The problem considered in this paper is similar to the state
estimation problem of linear systems with multiplicative and additive
noises [16], where it is shown that the optimal nonlinear filter
is obtained from a bank of Kalman filters, which requires ever
increasing memory and computation with time. Fixed memory sub-
optimal estimators are therefore proposed in [16] to overcome the
computational complexity. The approximations consist of restricting
the probability density f(xk|Ik) to depend on at most the last N
random variables γk, . . . , γk−N+1 and approximate each conditional
probability density f(xk|γk, . . . , γk−N+1, Ik) with a Gaussian dis-
tribution. Moreover, a hypothesis merging operation is introduced at
every step to prevent the increase of hypothesis numbers with time.
The same principle is utilized to derive a sub-optimal estimator for
the problem considered in this paper. The detailed derivations are
given below.

Let ΥN
k denote the sequence {γk, . . . , γk−N+1}. At time k, instead

of conditioned on all the past history γk, . . . , γ0, we only conditioned
on the past N steps ΥN

k , where N ≥ 2 and have the following
relation

f(xk|Ik) =
∑
ΥN

k

Pr(ΥN
k |Ik)f(xk|ΥN

k , Ik). (14)

It is clear from Section III that f(xk|ΥN
k , Ik) is mixture Gaussian

with 2k+1−N components. To obtain an approximate estimator, we
make the approximation that

f(xk|ΥN
k , Ik) ≈ Nxk (x̂k(ΥN

k ), Pk(ΥN
k )), (15)

where equality holds exactly when k = N − 1.
Therefore an approximate estimator from (14) and (15) is given

by

x̂k|k =
∑
ΥN

k

Pr(ΥN
k |Ik)x̂k(ΥN

k ), (16)

Pk|k =
∑
ΥN

k

Pr(ΥN
k |Ik)(Pk(ΥN

k ) + (x̂k(ΥN
k )− x̂k|k)(∗)′). (17)

In the following, we show the need to introduce a hypothesis
merging step and how to recursively calculate x̂k(ΥN

k ), Pk(ΥN
k )

and Pr(ΥN
k |Ik). Suppose at time k − 1, (15) holds, we have

f(xk−1|ΥN−1
k−1 , Ik−1)
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=
∑
γk−N

f(xk−1, γk−N |ΥN−1
k−1 , Ik−1)

=
∑
γk−N

f(xk−1|ΥN
k−1, Ik−1) Pr(ΥN

k−1|Ik−1)

Pr(ΥN−1
k−1 |Ik−1)

=
∑
γk−N

f(xk−1|ΥN
k−1, Ik−1) Pr(ΥN

k−1|Ik−1)∑
γk−N

Pr(ΥN
k−1|Ik−1)

.

Therefore, if f(xk−1|ΥN
k−1, Ik−1) is Gaussian,

f(xk−1|ΥN−1
k−1 , Ik−1) is mixture Gaussian with 2 components.

As a result, f(xk|ΥN
k , Ik) is rarely Gaussian, which make (15)

invalid. We therefore introduce a hypothesis merging step by
applying a Gaussian mixture reduction to f(xk−1|ΥN−1

k−1 , Ik−1)
with moment match and make the approximation that

f(xk−1|ΥN−1
k−1 , Ik−1)

≈ Nxk−1(x̂k−1(ΥN−1
k−1 ), Pk−1(ΥN−1

k−1 )), (18)

where

x̂k−1(ΥN−1
k−1 ) =

∑
γk−N

x̂k−1(ΥN
k−1) Pr(ΥN

k−1|Ik−1)∑
γk−N

Pr(ΥN
k−1|Ik−1)

, (19)

Pk−1(ΥN−1
k−1 ) =

∑
γk−N

Pr(ΥN
k−1|Ik−1)∑

γk−N
Pr(ΥN

k−1|Ik−1)
(Pk−1(ΥN

k−1)

+ (x̂k−1(ΥN
k−1)− x̂k−1(ΥN−1

k−1 ))(∗)′). (20)

Under the approximation (18), f(xk|ΥN
k , Ik) is Gaussian and

its mean x̂k(ΥN
k ) and covariance Pk(ΥN

k ) can be obtained from
x̂k−1(ΥN−1

k−1 ) and Pk−1(ΥN−1
k−1 ) via the Kalman filter with the new

information {γk, γksk, γkskyk} in a similar way to Lemma 4.
For the hypothesis probability recursion, we first have that

Pr(ΥN−1
k−1 |Ik−1) =

∑
γk−N

Pr(ΥN
k−1|Ik−1). (21)

Then Pr(ΥN
k |Ik) can be obtained from Pr(ΥN−1

k−1 |Ik−1) with the
new information {γksk, γkskyk} in a similar way to Lemma 5. The
fixed memory sub-optimal estimator is described in Algorithm 1.

B. Particle Filter

Particle filter is a well-established numerical method to approxi-
mate non-linear and non-Gaussian probability distributions by using
a set of samples [17]. We can utilize the particle filter to approximate
the posterior distribution f(xk,Γk|Ik) and then to obtain a sub-
optimal estimator. However, the structure of the considered problem
allows us to use the Rao-Blackwellization method [18] and work
more efficiently by sampling only from a conditional distribution to
reduce the computational burden. Specifically, since f(xk|Γk, Ik) is
Gaussian, it can be analytically calculated from the Kalman filter.
We only need to use samples to approximate Pr(Γk|Ik) and then
merge the two parts together to obtain an approximation to the
desired posterior distribution f(xk|Ik). The detailed derivation is
given below.

In our estimation problem, it is clear from (3) that the difficulty is
caused by the ever expanding probability space for the hypothesis Γk.
The particle filter motivates us to use finite samples to approximate
the entire probability space of Γk, i.e.,

Pr(Γk|Ik) ≈
N∑
i=1

δ(Γ− Γik) Pr(Γik|Ik),

where δ is the Dirac delta measure and N is the number of samples.
With a slight abuse of notion, we use Γik here to denote the i-th

Algorithm 1 Fixed Memory Estimator
For k < N , run the optimal estimator to obtain x̂k|k and Pk|k.
For k ≥ N ,

1) Hypothesis merging: compute x̂k−1(ΥN−1
k−1 ), Pk−1(ΥN−1

k−1 )
from (19) and (20).

2) Hypothesis time and measurement update:
• If γk = 0,

x̂k(ΥN
k ) = Ax̂k−1(ΥN−1

k−1 ),

Pk(ΥN
k ) = APk−1(ΥN−1

k−1 )A′ +Q.

• If γk = 1,

x̂−k = Ax̂k−1(ΥN−1
k−1 ),

P−k = APk−1(ΥN−1
k−1 )A′ +Q,

Kk = P−k C
′[CP−k C

′ +R+ (1− skγk)Y −1]−1,

x̂k(ΥN
k ) = (I −KkC)x̂−k +Kkskγkyk,

Pk(ΥN
k ) = (I −KkC)P−k .

3) Hypothesis probability merging: compute Pr(ΥN−1
k−1 |Ik−1)

via (21).
4) Hypothesis probability time and measurement update: com-

pute

Pr(ΥN
k |Ik) ∝ Pr(ΥN

k |Ik−1) Pr(skγk|ΥN
k , Ik−1),

where
• if γk = 0,

Pr(ΥN
k |Ik−1) = pPr(ΥN−1

k−1 |Ik−1),

Pr(skγk|ΥN
k , Ik−1) = 1− skγk.

• if γk = 1,

Pr(ΥN
k |Ik−1) = (1− p) Pr(ΥN−1

k−1 |Ik−1),

Pr(skγk|ΥN
k , Ik−1)

= skγk +
1− 2skγk√
|MkY + I|

e−
1
2

(Cx̂−
k

)′[Y−1+Mk]−1(∗),

where Mk = CP−k C
′ +R.

5) State estimate: compute x̂k|k and Pk|k from (16) and (17).

sample drawn from Pr(Γk|Ik). Therefore, an approximate to the
posterior is given by

f(xk|Ik) ≈
N∑
i=1

f(xk|Γik, Ik) Pr(Γik|Ik), (22)

based on which we can obtain a sub-optimal estimator.
However, since Pr(Γk|Ik) is unknown, we can not directly sample

from this probability distribution. The commonly used method to
overcome the circumstance is to sample particles {Γik}i=1,...,N

from an importance density q(Γk|Ik). Then we can approximate
Pr(Γk|Ik) with

Pr(Γk|Ik) ≈
N∑
i=1

wikδ(Γk − Γik), (23)

where wik is the normalized importance weight and wik ∝
Pr(Γik|Ik)/q(Γik|Ik). Moreover, if the importance density is chosen
to factorize such that

q(Γk|Ik) = q(γk|Γk−1, Ik)q(Γk−1|Ik−1),
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one can obtain new particle Γik ∼ q(Γk|Ik) by augmenting each
existing particle Γik−1 ∼ q(Γk−1|Ik−1) with the new state γik ∼
q(γk|Γk−1, Ik).

It has been proved that the degeneracy problem is inevitable with
the above sequential importance sampling [17]. That is, after a few
iterations, all but one particle will have weights that are very close to
zero. Therefore, a large computation is devoted to updating particles
that have negligible contribution to the final estimate. One way to
alleviate this problem is to select a good importance density. It is
shown in [18] that the optimal importance density to minimize some
degeneracy measure is given by

q(γk|Γik−1, Ik) = Pr(γk|Γik−1, Ik).

For the considered problem in this paper, we can analytically
calculate Pr(γk|Γik−1, Ik), which is given as follows. If γksk = 1,
Pr(γk|Γik−1, Ik) = γk. If γksk = 0,

Pr(γk|Γik−1, Ik) = Pr(γk|Γik−1, γksk = 0, Ik−1)

∝ Pr(γk, γksk = 0|Γik−1, Ik−1)

= Pr(γksk = 0|Γik, Ik−1) Pr(γk).

Therefore, we have if γksk = 0,

Pr(γk = 0|Γik−1, Ik)

∝ pPr(γksk = 0|γik = 0,Γik−1, Ik−1) = p, (24)

and

Pr(γk = 1|Γik−1, Ik)

∝ (1− p) Pr(γksk = 0|γik = 1,Γik−1, Ik−1)

(a)
=

1− p√
|M i

kY + I|
e
− 1

2
(Cx̂ik|k−1)′[Y−1+Mi

k]−1(∗)
, (25)

where M i
k = CP ik|k−1C

′ + R, and (a) can be calculated similarly
as (13).

As Pr(γk|Γik−1, Ik) is known, we can select it as the importance
density to alleviate the degeneracy problem. Moreover, we can verify
that the particle weight becomes wik = 1/N with this optimal
importance density. Based on the approximations (22) and (23), we
have the following state estimate

x̂k|k =
1

N

N∑
i=1

x̂ik|k, (26)

Pk|k =
1

N

N∑
i=1

(
P ik|k + (x̂ik|k − x̂k|k)(x̂ik|k − x̂k|k)′

)
, (27)

where x̂ik|k and P ik|k are the mean and covariance of f(xk|Γik, Ik),
respectively. The detailed particle filter is described in Algorithm 2.

Remark 7. The variational Bayesian (VB) method can also be
adopted here to design sub-optimal estimators with constant resource
requirements. The VB method approximates the complex posterior
distribution with a proposal distribution, which is parameterized in
certain forms to represent necessary statistics. These parameters
will be determined by optimizing the statistical distance between the
implicit posterior distribution and the proposal distribution. The VB
method has been utilized to approximate Gaussian mixture distribu-
tions in [19]. Interesting readers can refer to [19] and references
therein for details.

Remark 8. The proposed estimators can be extended to the case with
Markovian packet drops. Since f(xk|Γik, Ik) is Gaussian if packet
drops are independent with the system state, the conditional posterior
distribution f(xk|Ik) is still mixture Gaussian even for Markovian
packet drops. We can use similar approach to derive the MMSE

Algorithm 2 Particle Filter
1) Time update for each particle: For i = 1, . . . , N ,

• If k = 0, then

xi0|−1 = 0, P i0|−1 = Σ0.

• If k > 0, then

x̂ik|k−1 = Ax̂ik−1|k−1,

P ik|k−1 = AP ik−1|k−1A
′ +Q.

2) Sampling new particles: If γksk = 1, let γik = 1. If γksk = 0,
generate γik from the distribution described by (24), (25).

3) Measurement update for each particle:
• If γik = 0,

x̂ik|k = x̂ik|k−1, P
i
k|k = P ik|k−1.

• If γik = 1,

Ki
k = P ik|k−1C

′[CP ik|k−1C
′ +R+ (1− skγk)Y −1]−1,

x̂ik|k = (I −Ki
kC)x̂ik|k−1 + skγkK

i
kyk,

P ik|k = P ik|k−1 −Ki
kCP

i
k|k−1.

4) State estimate: compute x̂k|k and Pk|k from (26) and (27).

estimator and sub-optimal estimators. The main difference compared
with the i.i.d. case is that the iteration of Pr(Γik|Ik) is different and
more complex for correlated packet drops.

V. SIMULATIONS

In simulations, we adopt the same system parameters as in [7],
which are

A =

[
0.8

0.95

]
, C = [1, 1],Σ0 = Q =

[
1

1

]
, R = 1.

We conduct simulations with the optimal estimator, the oracle es-
timator, the OLSET-KF estimator in [7], the fixed memory estimator
and the particle filter. The OLSET-KF estimator does not consider
packet drops. When the estimator fails to receive a packet, it always
assumes that this is caused by the hold of transmission from the
scheduler. The oracle estimator is the optimal estimator under the
assumption that the estimator knows the value of γk at each step,
which is given in Algorithm 3. Clearly, the oracle estimator has the
smallest mean square error (MSE) and can be used as a benchmark
to evaluate the performance of other estimators. In simulations, the
schedule parameter Y is selected as Y = 1, N = 2 is selected for the
fixed memory estimator and the particle numbers is set to 20 in the
particle filter. The source code for all the simulations in this section
is available at [20].

Firstly, we compare the performance of different estimators and we
adopt Monte Carlo methods with 1500 independent experiments to
evaluate the sum of MSE

∑9
k=0 E

{
‖xk − x̂k|k‖2

}
under different

packet drop rates. The simulation results are illustrated in Fig. 2,
where the relative sum of MSE is plotted. The relative sum of MSE
is defined as the sum of MSE of an estimator divided by the sum of
MSE of the oracle estimator. It is clear from Fig. 2 that the estimation
error of the fixed memory estimator and the particle filter are close to
that of the optimal estimator and is much smaller than the OLSET-KF,
which shows the superior performance of the proposed sub-optimal
estimators and also indicates the advantage of considering packet
drops in the remote state estimation problem.

Moreover, in the case of p = 0 and p = 1, the sum of MSE of all
the estimators are equal. This is because when p = 0 (p = 1), the
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Algorithm 3 Oracle Estimator
1) Initialization:

x̂0|−1 = 0, P0|−1 = Σ0.

2) Measurement update:
• If γk = 0,

x̂k|k = x̂k|k−1, Pk|k = Pk|k−1.

• If γk = 1,

x̂k|k = (I −KkC)x̂k|k−1 +Kkskγkyk,

Pk|k = Pk|k−1 −KkCPk|k−1,

Kk = Pk|k−1C
′[CPk|k−1C

′ +R+ (1− skγk)Y −1]−1.

3) Time update:

x̂k+1|k = Ax̂k|k,

Pk+1|k = APk|kA
′ +Q.
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Fig. 2. Relative sum of MSE of different estimator under different packet
drop rate

optimal estimator (sub-optimal estimators) assigns zero probability
to all the hypotheses with a γk = 0 (γk = 1). Therefore, only the
hypothesis with γk = 1 (γk = 0) for all k is preserved. As a result,
the estimate of the optimal estimator (sub-optimal estimators) is the
same with the oracle estimator. Therefore, for the case that p = 0
(p = 1), the optimal estimator (sub-optimal estimators) and the oracle
estimator have the same sum of MSE. The recursions of the OLSET-
KF and the oracle estimator are the same for the case p = 0, where
there are no packet drops. For the case that p = 1, even though the
recursions of the OLSET-KF and the oracle estimator are different,
since they both start with x̂0|−1 = 0, their estimates would always
be x̂k|k = 0. Therefore, for the case that p = 0 and p = 1, the
OLSET-KF and the oracle estimator have the same sum of MSE.

In the second simulation, we evaluate how the execution time of the
MMSE estimator and the sub-optimal estimators grow with time. We
let p = 0.5 and generate a sequence of noisy observations. Then we
use the optimal estimator and the sub-optimal estimators to estimate
the system state. The simulation is conducted with python/numpy and
evaluated on Macbook Pro with 2.3 GHz Intel Core i5 processor. The
program execution time with respect to time is illustrated in Fig. 3.
It is clear that the program execution time of the optimal estimator is
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Fig. 3. Execution time of the optimal estimator and the sub-optimal estimators
with respect to time

increasing exponentially with time. However, the program execution
time of the two sub-optimal estimators does not change much when
time increases, which demonstrates the effectiveness of the proposed
sub-optimal estimators in reducing the computational complexity.

VI. CONCLUSIONS

This paper studies the remote state estimation problem of linear
systems with stochastic event-triggered sensor schedulers in the
presence of packet drops. The posterior distributions at the estimator
side are computed. Recursive MMSE estimators are derived. Sub-
optimal estimators to reduce the computational complexity are pro-
posed. However, the performance of sub-optimal estimators can only
be evaluated via simulations. Sub-optimal estimators with provable
performance guarantees are to be proposed.
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