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Abstract: Output-feedback control of general underactuated mechanical systems is currently considered a major open problem.
This study is focused on the output-feedback stabilisation control problems for a special class of underactuated mechanical
systems, which appear in robotics and aerospace applications. For the synthesis of controller, first, the considered underactu-
ated mechanical system is explicitly transformed into two cascade connected subsystems, and then an auxiliary filter-based
virtual stabilisation controller is developed to locally asymptotically stabilise the first subsystem. Further, the designed virtual
controller is again involved into the second subsystem using backstepping procedure to construct the actual control law, in
which a series of auxiliary time-varying first-order low-pass filters are also implemented to avoid using the derivative of the
system non-linear functions. Moreover, in the second step, finite-time observer technique is utilised to precisely reconstruct
the immeasurable states to achieve the finite-time stabilisation control in the sense of output feedback. Lyapunov analysis
shows the local asymptotic stability of the closed-loop system through the cascade system stability criteria. Simulation results
are presented by using two benchmark non-linear underactuated mechanical systems to demonstrate the feasibility and the
effectiveness of the proposed controller.
1 Introduction

Underactuated mechanical systems, systems with fewer
inputs than degree of freedom, appear in a variety of prac-
tical plants including Robotics (e.g. flexible-link robot, non-
holonomic mobile robots and walking robots), Aerospace
Vehicles (e.g. helicopters, aircraft, spacecraft and satellites),
underwater vehicles and surface vessels. Owing to their
broad range of applications, how to control of these under-
actuated systems, especially, with only output information
available, has received much attention over the past decades.

The main difficulties lying in control of these underactu-
ated mechanical systems are caused by the lack of actuation
for some configuration variables. The underactuated vari-
ables can only be driven by the coupling movement of
actuated variables. Besides, the existence of under-actuation
would commonly admit second-order non-holonomic con-
straints to the mechanical systems. For these circumstances,
the control problem of underactuated mechanical systems
is a changeling one and open problem to be solved. More-
over today, much of the research is still focused on finding
state feedback asymptotical stabilisation controllers. Few
progresses have been made in the output–feedback-tracking
control cases of such systems. While, the controller design
for underactuated mechanical system is closely related to the
controllability and accessibility analysis. Early researcher’s
work reveals that potential energy plays a vital role in the
controllability of underactuated mechanical systems. When,
certain underactuated mechanical systems, such as ground-
based robot manipulators, performing tasks in potential
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field, they are proved to be linearisable around equilibriums
and thus locally controllable. Correspondingly, the control
system design is relatively easy and various control algo-
rithms are available and have been presented for such kinds
of underactuated systems, for example, energy-based con-
trol [1, 2], controlled Lagrangian [3], interconnection and
damping assignment passivity-based control (IDAP) [4, 5].
However, for the underactuated mechanical systems without
potential energy, the linearised system around working equi-
librium is proved not to be controllable; furthermore, it can
be verified that this kind of underactuated systems does not
satisfy Brockett’s necessary conditions, which means there
exists no time-invariant and continuous control law that can
asymptotically stabilise this system to its equilibrium [6].
Thus, the conventional control algorithms are ruled out in
such conditions. The stabilisation for such systems might
be solved with either discontinuous or time-varying control
law. Different control strategies are discussed in literature,
for example, sliding-mode control [7–10], motion-planning-
based control [11, 12], backstepping control [13, 14], fuzzy
control [15, 16]. However, these controllers are either too
complicated to be adopted in practical applications or only
applicable for specific systems considered. To the best of
the authors’ knowledge, no control algorithms are derived
for a general class of underactuated mechanical systems.

Nevertheless, all of the above-mentioned results hold only
for the full-state feedback control cases, and as far as we
know, the problem of output-feedback control for the under-
actuated mechanical systems remains open. In some under-
actuated systems, the lack of actuation is usually designed
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to reduce expense, size or weight, for example, under-
actuated industrial manipulators [17]. In those situations,
velocity measurement sensors are not equipped. Further-
more, output-feedback control has the ability of avoiding
the measurement noise of velocity signals. Thus, research
on output-feedback control for underactuated mechanical
system would be meaningful. However, just as mentioned
above, owing to the complex dynamics in underactuated
mechanical systems, very few results have been presented
about the output-feedback control case. Only certain for spe-
cific systems are available, for example, the output-feedback
control for translational oscillator with rotational actuator
(TORA) system [18, 19], spherical inverted pendulum [20],
mobile robot manipulator [21] and quad-rotor underactuated
aerial vehicles (UAV) [22]. It should be noted that all the
above-mentioned output-feedback controllers are designed
for particular underactuated systems and are not applicable
to other kinds of underactuated mechanical systems. In this
paper, we will tackle this problem by using an auxiliary filter
in a spirit similar to the recently proposed control technique
in [23] for robotics and aerospace vehicles.

The main contribution is to find explicit change of coor-
dinates and output control that transform a class of underac-
tuated mechanical systems into cascade non-linear systems
with structural properties that are convenient for control
design purposes. More specifically, using the transformation
and reduction technique, the underactuated mechanical sys-
tem considered is firstly transformed into a cascade structure
including two subsystems, and under this, an auxiliary filter
is developed for designing the virtual control law for the
first subsystem. Then, a new stabilisation method as stabil-
ising non-linear output-feedback control law is introduced
to the second systems. This controller is obtained via a sim-
ple recursive method like backstepping technique through
a series of first-order time-varying low-pass filters that is
convenient for implementation. Note that in this step a finite-
time observer is involved to reconstruct the immeasurable
states for finite-time stability of the closed-loop. A Lyapunov
argument is used to show local asymptotical stability of the
special classes of cascade underactuated systems and then
the output-feedback control problem is solved explicitly.
This paper is organised as follows. In Section 2, a formal
problem statement accompanied by all the governing equa-
tions is presented. In Section 3, the control scheme and the
associated stability analysis for the resulting closed-loop are
investigated. Section 4 presents numerical simulation results,
and the paper is ended with some concluding remarks in
Section 5.

2 Preliminary and problem formulation

In this work, the dynamics of the mechanical systems is for-
mulated through the Euler–Lagrange equation. The Lagrange
of a simple mechanical system is the difference between
a (positive semi-definite) kinetic energy and a potential
energy as

L(q, q̇) = K − V = 1

2
q̇TM (q)q̇ − V (q) (1)

where q ∈ U denotes the configuration vector that belongs
to an n-dimensional configuration manifold U ⊂ R

n, M (q)
is the positive-definite symmetric inertia matrix, K is the
kinetic energy and V (q) is the potential energy of the sys-
tem. Then, the Euler–Lagrange equation for the mechanical
986
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system is as follows

d

dt

∂L
∂ q̇

− ∂L
∂q

= τ (2)

where τ is the generalised control inputs including either
forces or torques applied on this mechanical system.

Consider the mechanical systems described by Euler–
Lagrange equation in (2), two terminologies are needed in
the problem formulation, that is, ‘shape variable and kine-
matic symmetry’. Here, Shape variables-qs are the variables
that appear in the inertia matrix M , that is, M = M (qs), and
a Lagrange system is kinetic symmetry w.r.t. qi, if and only
if the kinetic energy K of the mechanical system is invariant
with respect to the configuration variable qi, that is

∂K

∂qi
= 0 (3)

In this work, the main research is restricted to a class of
underactuated mechanical systems with the properties of: (i)
full-actuated shape variable qs, (ii) kinetic symmetry w.r.t qx,
and (iii) q̇x does not appear in the centrifugal, Coriolis and
gravity terms. When using the Euler–Lagrange expression,
this special class of underactuated mechanical systems can
be formulated as{

mxx (qs) q̈x + mxs (qs) q̈s + hx (q, q̇s) = 0
msx (qs) q̈x + mss (qs) q̈s + hs (q, q̇s) = τ

(4)

Under these conditions, the problem of output-feedback
stabilisation of system in (4) is considered with only the
measurement of the configuration variables (qx, qs).

Remark 1: The special system considered in this paper is
similar to the Class I underactuated mechanical systems
defined in [23]. However, compared with [23], the addi-
tional property 3) is required, which is used to extend the
state-partial feedback transformation into the new cases of
output-feedback.

3 Main results

3.1 Model transformation

The explicit cascade transformation to the original system is
described in Lemma 1.

Lemma 1 [23]: let τ = α(qs)u + β(q, q̇s) be the collected
partially linearising change of control for (4). Assuming
all the elements of ω = m−1

xx (qs)mxs(qs) dqs are exact forms
and let ω = dγ (qs), then there exists a global change of
coordinates obtained from the Lagrangian of the system

qr = qx + γ (qs) � � (qx, qs)

pr = mxx (qs) q̇x + mxs (qs) q̇s

(5)

and transforms the dynamics of the underactuated system
into a cascade normal form in strict feedback form

∑
a

{
q̇r = m−1

r (qs)pr

ṗr = gr(qr , qs)

∑
b

{
q̇s = ps

ṗs = u

(6)
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with ps = q̇s and

{
mr (qs) = mxx (qs)

gr (qr , qs) = −∂V (qr − γ (qs) , qs) /∂qr
(7)

Note that the shape variable qs can be regarded as the virtual
control input for

∑
a-subsystem. However, it is implicitly

included in unknown function gr(·), which poses consider-
able obstacles in controller design. To linearly factor out
the virtual control input qs, the feedback change of input
described by Lemma 2 is introduced.

Lemma 2 [23]: Consider the following non-linear system
non-affine in control

{
q̇r = N (qs) pr

ṗr = gr (qr , qs)
(8)

where qr , pr , qs ∈ R
n, gr(qr , qs) : R

n × R
n → R

n is a
smooth function with gr(0, 0) = 0, N (qs) is a invertible
matrix for all qs, and mr(qs) = N −1(qs) is a positive-definite
and symmetric inertia matrix. Suppose there exists an iso-
lated root qs = σ(qr) of gr(qr , qs) = 0 with the property
σ(0) = 0 such that

det

(
∂gr

∂qs
(qr , σ(qr))

)
�= 0 (9)

and let

ψ(qr , v) � [mr(qs)gr(qr , qs)]qs=σ(qr)+v (10)

Then, for all qr ∈ R
n, w = ψ(qr , v) is a local diffeomor-

phism around a neighbourhood of v = 0. Assume there
exists an open ball of Br(0) around w = 0 and a function
ϕ : R

n × R
n → R

n such that

ψ(qr , ϕ(qr , w)) = w, ∀w ∈ Br(0) ⊂ R
n (11)

uniformly in qr . Then the feedback change of input

qs = σ(qr) + ϕ(qr , w) (12)

transforms (8) into the following form

q̇r = N (qs)pr

ṗr = N (qs)w
(13)

It should be noted that Lemmas 1 and 2 together constitute
the explicit transformation to be used in the following parts.
For clarity, the following representation of coordinates is
made in controller design procedures. Let

x1 = qr , x2 = pr , x3 = qs, x4 = ps (14)

Note that here only x1, x3 are measurable.

In view of Lemmas 1 and 2, the control task now changes
to find a control law asymptotically stabilises the following
IET Control Theory Appl., 2013, Vol. 7, Iss. 7, pp. 985–996
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cascade system with only the measurement of variables x1

and x3

′∑
1

⎧⎨
⎩

∑
1

{
ẋ1 = N (x3)x2

ẋ2 = N (x3)w
x3 = σ(x1) + ϕ(x1, w)

′∑
2

⎧⎨
⎩

∑
2

{
ẋ3 = x4

ẋ4 = u
τ = α(x3)u + β(x1, x3, x4)

(15)

Generally, input-to-state stability theorem can be employed
in the controller design for cascade connected systems. How-
ever, the existence of the intermediate term x3 = σ(x1) +
ϕ(x1, w) rules out its application to this paper. However, for
the general cascade systems, the following lemma reveals
the intrinsic stability property between cascaded subsystems,
and will be used in the design and analysis of controllers for
system in (15).

Lemma 3 [24]: For the cascade system

{
ẋ = f (x, z)
ż = g(z)

(16)

If x = 0 is a locally asymptotically stable equilibrium of ẋ =
f (x, 0), and if ż = g(z) is also locally asymptotically stable,
then the composite system (16) also is locally asymptotically
stable.

On the basis of Lemma 3, it can be known that if
the virtual control input x3 for

∑′
1-subsystem can locally

asymptotically stabilise the
∑′

1-subsystem, and τ can also
locally asymptotically stabilise the

∑′
2 -subsystem, then the

cascade system is locally asymptotically stable. In the fol-
lowing parts, virtual controllers of x3 and τ will be designed
separately to achieve local asymptotical stabilisation of
corresponding subsystems.

3.2 Controller design for
∑′

1-subsystem

In view of the above definition of variables, x1 can be
measurable, and thus if w can be designed to locally asymp-
totically stabilise the

∑
1-subsystem, then the virtual control

input x3 for
∑′

1-subsystem can be derived straightforwardly
from x3 = σ(x1) + ϕ(x1, w). To this end, viewing work of
Loria and Nijmeijer [25], the following output-feedback con-
troller for

∑
1-subsystem is designed and the conclusion is

stated in Theorem 1.

Lemma 4 (theorem of Barbashin [26]): Let x = 0 be an
equilibrium point of system ẋ = f (x). Let V : D → R

+ be
a continuously differentiable, positive definite function on a
domain D containing the origin x = 0, such that V̇ (x) ≤ 0
in D. Let S = {x ∈ D|V̇ (x) = 0} and suppose that no solu-
tion can stay identically in S, other than the trivial solution
x(t) = 0. Then, the origin is asymptotically stable.

Theorem 1: For the subsystem

∑
1

{
ẋ1 = N (x3)x2

ẋ2 = N (x3)w
(17)
987
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where N (·) is a positive-definite function. If the output-
feedback controller is designed to be

w = −kptanh(x1) − kd tanh(ϑ)

ϑ = qc + bx1

q̇c = −a tanh(qc + bx1)

(18)

where a, b, kp, kd are positive real numbers. Then this system
is asymptotically stable.

Proof: Choose the following candidate Lyapunov function
for system (17)

V = V1 + V2 (19)

where V1, V2 is defined respectively as

V1 = 1

2
x2

2 + kp ln cosh(x1) + kd

b
ln cosh(ϑ) (20)

V2 = εx2 (tanh(x1) − tanh(ϑ)) (21)

with ε is a positive real number to be determined. To
prove the positive-definite property of V , the following two
auxiliary functions are considered⎧⎪⎪⎨

⎪⎪⎩
W1 = 1

4
x2

2 + 1

4
tanh2(x1)kp + ε tanh(x1)x2

W2 = 1

4
x2

2 + 1

4
tanh2(ϑ)

kd

b
− ε tanh(ϑ)x2

(22)

It is easy to prove that ln | cosh(z)| ≥ α tanh2(z) for all
α ≤ 1/2 and for all z ∈ R; therefore

V ≥ W1 + W2 + 1

2

(
kp ln cosh(x1) + kd

b
ln cosh(ϑ)

)
(23)

If ε is constrained to

ε ≤ 1

2
min

{√
kp,

√
kd/b

}
(24)

Then, W1, W2 are positive definite. Thus, the candidate
Lyapunov function V is positive definite as well. Under the
designed control law (18), the closed-loop system can be
rewritten as⎧⎨

⎩
ẋ1 = Nx2

ẋ2 = N
(−kp tanh(x1) − kd tanh(ϑ)

)
ϑ̇ = −a tanh(ϑ) + bNx2

(25)

Taking the derivative of (20) along trajectories (25), one can
obtain

V̇1 = x2ẋ2 + kptanh(x1)Nx2 + kd

b
tanh(ϑ)

× (−a tanh(ϑ) + bNx2)

= −akd

b
tanh2(ϑ) (26)

Further, the derivative of the second Lyapunov function V2

along the trajectory of (25) can be calculated as

V̇2/ε = tanh2(x1)(−kpN ) + tanh2(ϑ)(kdN )

+ x2
2

(
sech2(x1)N − sech2(ϑ)bN

)
+ tanh(x1) tanh(ϑ)

(
kpN + kdN

)
+ tanh(ϑ)x2

(
a sech2(ϑ)

)
(27)
988
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Thus

V̇ = V̇1 + V̇2 = −[tanh(x1), tanh(ϑ), x2] Q

× [tanh(x1), tanh(ϑ), x2]T (28)

where Q is a matrix with sub-matrix as

Q =
[

Q11 Q12

Q21 Q22

]
Q11 = εkpN

Q12 = QT
21 = [

0.5ε(kpN + kdN ) 0
]

Q22 =
[

akd/b − εkdN 0.5εa sech2(ϑ)

0.5εa sech2(ϑ) −ε
(
sech2(x1)N − sech2(ϑ)bN

)
]

(29)

In the following part, we will show that by appropriately
choosing ε, matrix Q can be rendered positive definite.

Since Q11 > 0, based on Schur complement lemma, if one
wants to set Q > 0, the matrix Q22 − QT

12Q−1
11 Q21 needs to

be positive definite, that is

S � Q22 − QT
12Q−1

11 Q12 > 0 (30)

where

S =
[

S11 S12

S21 S22

]
(31)

The positive-definite requirement implies that all the order
principal minor determinants of symmetric matrix S should
be greater than zero, that is

S11 � akd

b
− εkdN − εN (kp + kd)

2

4kp
> 0 (32)

S22S11 − S12S21 = ε2N 2
(
sech2(x1) − b sech2(ϑ)

)
×

(
(kp + kd)

2

4kp
+ kd

)
− ε2 a2sech4(ϑ)

4

−εN
(
sech2(x1) − b sech2(ϑ)

) akd

b
> 0 (33)

Equation (32) implies the following constrain for ε

ε <
4akdkp

bN (4kdkp + (kp + kd)2)
(34)

As for (33), define the set

Bη = {
xe � [x1, ϑ] ∈ R

2 : 0 < ‖xe‖ < η
}

(35)

It could be observed that in the ball set Bη, sech(x1), sech(ϑ)
are always bounded and their lower and upper bounds are
represented here by positive real numbers x1m, ϑm, x1M , ϑM ,
respectively. So, if ε is sufficiently small enough and the
controller parameters b is chosen to satisfy the following
inequality

b >
sech2(x1M )

sech2(ϑm)
(36)

Then the following inequality would always holds in Bη (see
(37) on bottom of the next page)

As the left part of this inequality converges to zero if ε
is sufficiently small enough, whereas the right part of this
IET Control Theory Appl., 2013, Vol. 7, Iss. 7, pp. 985–996
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inequality actually is always negative if constraint (36) is
satisfied; thus (37) do always holds in Bη. Moreover, (37)
actually leads to the desired results for (33).

From the above analysis, matrix Q can be made positive
definite in [x1, ϑ] ∈ Bη if sufficiently small ε is chosen and
b is chosen to satisfy constrain (36). It should be noted that
because ε does not appear in the control law and appears
only in the stability analysis part, sufficiently small ε always
exists.

Based on the above calculation, we know that by appro-
priately choosing the positive number ε, V can be set to
be positive definite at the same time V̇ is set to be nega-
tive definite. Thus from Lemma 4, we can infer that V̇ will
eventually converge to zero, which implies asymptotically
convergence of system state x1, ϑ , x2. All these prove the
asymptotical stability of system (17) under controller (18).
This completes the proof. �

When to backstepping the virtual control law of
∑

1-
subsystem to the

∑
2-subsystem, reference signal of x3

following (15) should be given as

x̄3 = σ(x1) + ϕ(x1, −kp tanh(x1) − kd tanh(ϑ))

ϑ = qc + bx1

q̇c = −a tanh(qc + bx1)

(38)

Remark 2: Compared with the stability analysis proce-
dure of Loria and Nijmeijer [24], the use of Schur comple-
ment lemma in this paper significantly simplify the stability
analysis procedure and design process of the control gain.

Remark 3: The proof of Theorem 1 requires a, kp, kd to be
positive numbers and b to satisfy (36). As long as this
requirement is ensured, the existences of sufficient small
positive number ε can be guaranteed to satisfy the stabil-
isation conditions. However, it should be noted that if we
only deals with systems (17), arbitrary satisfactory positive
values can be chosen for those controller parameters. How-
ever, in the context of this paper, the choice of a, b, kp, kd

are limited to certain values to allow for the conduction of
model transformation stated in Lemma 2. Thus, the value
of a, b, kp, kd should be disposed specifically for different
underactuated mechanical systems.

3.3 Controller design for
∑′

2-subsystem

From the above analysis, the virtual tracking signal for
∑′

2-
subsystem is already derived as given by x̄3. Then, in view of
backstepping design technique, x̄3 can be involved into the∑

2-subsystem to design the control law u, and then from
τ = α(x3)u + β(x1, x3, x4), the actual control law τ can be
calculated. However, this method can be directly applied
to state feedback form, while, for the output-feedback case,
there are two issues to be solved. The one is: the vari-
able x4 in τ = α(x3)u + β(x1, x3, x4) is immeasurable, which
renders the transform of input hardly feasible in output-
feedback form, and the other problem is: in the backstepping
IET Control Theory Appl., 2013, Vol. 7, Iss. 7, pp. 985–996
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design procedure, the derivative of virtual signal x̄3 is
needed, which may require additional information of the
immeasurable signal x2.

In the following parts, the two problems are solved
with finite-time observer and low-pass filter techniques. The
finite-time observers are used to reconstruct the immeasur-
able states in finite time, which renders the input transfor-
mation τ = α(x3)u + β(x1, x3, x4) applicable; under this, the
introduction of first-order low-pass filters during each recur-
sive step avoids the derivatives of virtual signals from the
front step, and thus the output-feedback circumstances are
solved totally. The detailed design procedure is shown as
follows.

3.3.1 Finite-time observer design: For the purpose
of estimation of the unmeasured coordinate x4, the following
finite-time observer [27] is introduced

˙̂x3 = x̂4 + ko1

∣∣x3 − x̂3

∣∣αo sgn
(
x3 − x̂3

)
˙̂x4 = u + ko2

∣∣x3 − x̂3

∣∣2αo−1
sgn

(
x3 − x̂3

) (39)

It has been proved that if parameters are chosen to satisfy
α0 ∈ (0.5, 1), ko1, ko2 ∈ R

+, then the observer error system is
finite-time stable, which means when t > ts (ts is the setting
time for finite-time observers), the observer states equal to
the system states, that is, x̂3 = x3, x̂4 = x4. For space limita-
tion, the details of the derivative process are omitted here;
see for example, [27].

To this end, the following design procedure of the con-
trollers is assumed that states x3 and x4 can be reconstructed
precisely in finite-time period. The design procedure is given
below.

3.3.2 Backstepping controller design for
∑

2-
sub-system:

Step 1: To avoid the derivative of x̄3 in the controller design
step, an auxiliary system is introduced for the virtual input
x̄3 by using a time-varying first-order low-pass filter, that is

ε3(t)ẋ3f + x3f = x̄3, x̄3(0) = x3f (0) (40)

where ε3(t) is a time-varying function to be designed later.
Define the following error variables

z3 = x3 − x3f (41)

The derivative of z3 can be given as

ż3 = ẋ3 − ẋ3f = x4 − ẋ3f (42)

To this end, the virtual input for x4 can be designed to be

x̄4 = −k3z3 + ẋ3f (43)

with k3 to be positive control gains.
ε

((
sech2(x1)N − sech2(ϑ)bN

) ∗
(

N (kp + kd)
2

4kp
+ Nkd

)
− a2sech4(ϑ)

4

)

>

(
N

(
sech2(x1) − b sech2(ϑ)

) akd

b

)
(37)
989
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Step 2: Similarly, another auxiliary system for x̄4 is designed
by the following low-pass filter

ε4(t)ẋ4f + x4f = x̄4, x̄4(0) = x4f (0) (44)

where ε4(t) is a time-varying function to be designed later.

Accordingly, define the following error variable z4

z4 = x4 − x4f (45)

Then, the error dynamics can be calculated as

ż4 = ẋ4 − ẋ4f = u − ẋ4f (46)

Then, the control input is chosen as

u = −k4z4 + ẋ4f (47)

where k4 ∈ R.
In the following section, the asymptotical stability prop-

erty is thoroughly analysed.

3.3.3 Stability analysis for
∑

2-subsystem: First, let
us define the following filter error variables

y3 = x3f − x̄3, y4 = x4f − x̄4 (48)

From the definition of z3 and z4 in (40) and (44), respec-
tively, one has

x3 = z3 + x3f = z3 + y3 + x̄3 (49)

x4 = z4 + x4f = z4 + y4 + x̄4 (50)

Further from the relations (48) and (49), the dynamics of the
closed-loop system for

∑
2 in the form of new coordinates

y3, z3, y4, z4, under control law in (46) can be formulated as

∑
3

⎧⎪⎪⎨
⎪⎪⎩

ż3 = −k3z3 + z4 + y4

ż4 = −k4z4

ẏ3 = −y3/ε3(t) + B3(x1, x2, ϑ)

ẏ4 = −y4/ε4(t) + B4(x1, x2, x3, ϑ)

(51)

where B3(x1, x2, ϑ) = −˙̄x3, B4(x1, x2, x3, ϑ) = −˙̄x4.
It can be easily verified that the stability property of

the original closed-loop system is the same as the trans-
forms systems in (50). To analyse the stability property of∑

3-subsystem, the following assumption is introduced in
advance.

Assumption 1: There exist time-varying positive func-
tions δ(t) converging to zero as t → 0 and satisfying

lim
t→∞

∫ t

0

δ(ω) dω = ρ < ∞ and δ̇(t) = −l(t)δ(t)

with finite positive real constants ρ and functions
l(t) > 0.

Note that there are many choices for δ(t) that satisfies
the Assumption 1. For example, e−l1t with l1 > 0, (1 + t)−l2

with l2 > 1. Then the following conclusion statement can be
given:
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Theorem 2: For
∑

3-subsystem in (50), if ε3(t) and ε4(t) are
selected with

εi(t) = �iδi(t), (i = 3, 4)

�3 <
2

δ3(0)
, �4 <

2

δ4(0) + 1

(52)

and k3 > 1, k4 > 1/2, then given any positive number p, for
all initial conditions satisfying (x2

1 + x2
2 + x3

3 + ϑ2) < 2p, the
closed-loop

∑
3-subsystem is asymptotically stable.

Proof: Define the following Lyapunov function candidate

V3 = 1

2
z2

3 + 1

2
z2

4 + 1

2
δ3(t)y

2
3 + 1

2
δ4(t)y

2
4 (53)

The derivative of the Lyapunov function can be calculated
as

V̇3 = z3ż3 + z4ż4 − l3(t)δ3(t)

2
y2

3 + δ3(t)y3ẏ3

− l4(t)δ4(t)

2
y2

4 + δ4(t)y4ẏ4 (54)

Substituting system dynamics in (50) into V̇3, one obtains

V̇3 = z3(−k3z3 + z4 + y4) + z4(−k4z4)

+ δ3(t)y3

(
− y3

ε3(t)
+ B3

)
+ δ4(t)y4

(
− y4

ε4(t)
+ B4

)

− l3(t)δ3(t)

2
y2

3 − l4(t)δ4(t)

2
y2

4 (55)

Since for any p > 0, the set � : (x2
1 + x2

2 + x3
3 + ϑ2) < 2p is

a compact set in R
4 Therefore ‖Bi‖ has a maximum Mi on

�.

V̇3 ≤ −
(

l3(t)δ3(t)

2
+ δ3(t)

ε3(t)

)
y2

3 −
(

l4(t)δ4(t)

2
+ δ4(t)

ε4(t)

)
y2

4

+ δ3(t)|y3|M3 + δ4(t)|y4|M4 − k3z2
3 − k4z2

4 + 1

2
z2

3

+ 1

2
z2

4 + 1

2
z2

3 + 1

2
y2

4

≤ −
(

δ3(t)

ε3(t)
− δ3(t)

2

)
y2

3 −
(

δ4(t)

ε4(t)
− 1

2
− δ4(t)

2

)
y2

4

− (k3 − 1)z2
3 −

(
k4 − 1

2

)
z2

4 + δ3(t)
M 2

3

2
+ δ4(t)

M 2
4

2
(56)

If the time-varying functions ε3(t), ε4(t) are chosen to satisfy
(51), then we can obtain that

V̇3 ≤ −
(

1

�3
− δ3(0)

2

)
y2

3 −
(

1

�4
− 1 + δ4(0)

2

)
y2

4

− (k3 − 1)z2
3 −

(
k4 − 1

2

)
z2

4 + δ3(t)
M 2

3

2
+ δ4(t)

M 2
4

2
(57)

Define

s = [y3, y4, z3, z4]T (58)
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and

γ = min

(
1

�3
− δ3(0)

2
,

1

�4
− 1 + δ4(0)

2
, k3 − 1, k4 − 1

2

)
(59)

Then

V̇3 ≤ −γ ‖s‖2 + δ3(t)
M 2

3

2
+ δ4(t)

M 2
4

2
(60)

Integrating both sides over [0, ∞] yields

∫∞

0

‖s‖2dt ≤ M 2
3

2γ

∫∞

0

δ3(t) dt + M 2
4

2γ

∫∞

0

δ4(t) dt

− (V3(∞) − V3(0))

γ

≤ M 2
3 ρ3 + M 2

4 ρ4 + 2V3(0)

2γ
≤ ∞ (61)

which means s ∈ L2. Thus, when time evolves to infinity, s
converges to zero, that is

lim
t→∞ ‖s‖ = 0 (62)

which means the
∑

4-subsystem is asymptotically stable.
This completes the proof. �

3.4 Stability results and further remarks

In Sections 3.2 and 3.3, the controllers are designed
separately for

∑′
1 and

∑′
2-subsystem and the asymp-

totical stability property of the corresponding closed-loop
system is thoroughly analysed. Under this, based on Lemma
3, the following results can be further concluded for the
underactuated mechanical system considered in (4):

Theorem 3: Consider the system (4) with the control laws
in (37) and (46). If the control gains are selected properly,
the closed-loop is locally asymptotically stable in sense of
output feedback, that is, limt→ q(t) = 0.

Proof: Combining Theorems 1 and 2 with Lemma 3, the
proof of Theorem 3 can be given straightforwardly. �

Remark 4: The full-state feedback scheme proposed in [23]
is extended to output-feedback situation via a series of con-
structed controllers and filters. If the estimated velocity ϑ is
replaced with real one x2, the filter gains ε3(t), ε4(t) are set to
be zero and the finite-time observers are removed, the pro-
posed output-feedback controllers degrades to the full-state
feedback one. This distinction is utilised in the simulation
part to verify the effectiveness of the proposed controller.

Remark 5: Here the finite-time observer design satisfies the
‘separation principle’ such that the observer and controller
can be designed separately. The only requirement for param-
eters of the observer is to ensure all the states of the system
stay in the locally controllable domain before the setting
time is arrived. If the applied controller has the ability to
stabilise the system, one admissible way is to choose the
observer dynamics fast enough to provide the exact evalu-
ation of the unmeasured states. This can be easily achieved
by selecting the parameters of the observer, which can be
verified by simulation (see following examples).
IET Control Theory Appl., 2013, Vol. 7, Iss. 7, pp. 985–996
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Remark 6: From the cascade backstepping structure of the
controller, it can be known that any control algorithm that
can asymptotically stabilise

∑
1-subsystem in (15), can also

be used in the recursive design procedure in
∑

2-subsystem
to develop the control input u. Moreover, this conclusion is
used in the following simulation to relax the complexity in
controller designs for

∑
1-subsystem.

Remark 7: The closed-loop system (50) is in the form of the
so-called standard singular perturbation model [25].{

ε3(t)ẏ3 = −y3 − ε3(t) ˙̄x3

ε4(t)ẏ4 = −y4 − ε4(t) ˙̄x4
(63)

the state yi (i = 3, 4) of the fast-varying system (62), whose
velocity ẏi (i = 3, 4) can be large when εi (i = 3, 4) is small,
may rapidly converge to a root of 0 = −yi − εi(t) ˙̄xi (i =
3, 4), which is zero. In this situation, the closed-loop sys-
tem dynamics of (50) is determined by the following
quasi-steady-state model{

ż3 = −k3z3 + z4

ż4 = −k4z4
(64)

Furthermore, by appropriately choosing the parameters
k3, k4, system (63) can be rendered stable. This singular per-
turbation model also implies that the reducing εi (i = 3, 4)
diminishes the effect y4 in (63), which tells us that the intro-
duction of the low-pass filters does not significantly affect
the stability property of system (63).

Remark 8: At each step in backstepping procedure, an auxil-
iary low-pass filter is also introduced to avoid the derivative
of the virtual control input. This is essentially the same
strategy used in the dynamic surface control algorithm [28]
to relax the computational burden caused by derivatives
of nonlinear functions in intermediate virtual inputs. How-
ever, compared with conventional adaptive dynamic surface
control methods introduced in [28], the design of the time-
varying first-order low-pass filter renders the tracking error
asymptotically converges to zero as time evolves to infinity.
When referred to conventional dynamic surface control, the
designed function εi (i = 3, 4) could be regarded as specific
constant real numbers. However, as to the proposed con-
troller in this paper, εi (i = 3, 4) changes to time-varying
functions decreasing quickly towards zero, which essentially
means the expanding of the bandwidth of the first-order
low-pass filters. Especially, when time evolves to infinity,
the low-pass filter will change to a full-pass filter, which
is actually a direct-pass block. Then, the designed dynamic
surface control degrades to backstepping control with the
replacement of the symbolic derivative calculation to a
numerical one. It should be noted that the computation bur-
den would increase dramatically when εi (i = 3, 4) becomes
small enough. In this case, the compromise between com-
putation burden and control performance should be made by
deciding when to stop changing the gains of the designed
first-order low-pass filters.

Remark 9: When the designed control torque is applied to
the underactuated system, the closed-loop dynamics for

∑′
1-

subsystem turns out to be

∑
4

{
ẋ1 = N (z3 + y3 + x̄3) x2

ẋ2 = g (x1, z3 + y3 + x̄3)
(65)
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The coordinates (y3, z3) act as a perturbation term to
∑

4-
subsystem. If the convergence rate of (y3, z3) could be
made faster, one would expect a better performance of∑

4-subsystem. Based on this philosophy, the following cal-
culation tries to deduce the explicit upper L2-norm bounds
for the perturbation term (y3, z3).

From (56), one has

V̇3 ≤ −
(

1

�3
− δ3(0)

2

)
y2

3 + δ3(t)
M 2

3

2
+ δ4(t)

M 2
4

2
(66)

Integrating both sides the above equation, one can obtain

∫∞

0

y3(τ )Ty3(τ ) dτ ≤ 1

(1/�3) − [δ3(0)/2]
× (

V3(0) + 0.5ρ3M 2
3 + 0.5ρ4M 2

4

)
(67)

Thus

‖y3(τ )‖2
L2

≤ 1

(1/�3) − [(δ3(0))/2]
× (

V3(0) + 0.5ρ3M 2
3 + 0.5ρ4M 2

4

)
(68)

Similarly, one can also obtain

‖z3(τ )‖2
L2

≤ 1

(1/�4) − [(1 + δ4(0))/2]
× (

V3(0) + 0.5ρ3M 2
3 + 0.5ρ4M 2

4

)
(69)

It could be observed from (67) and (68) that the upper
bounds on signals y3 and z3 are partially decided by �3

and �4, respectively. The smaller the �3 and �4, the smaller
the values of ‖y3‖L2 and ‖z3‖L2 would be. Thus, we would
expect a faster convergence of the errors with a smaller value
of �3 and �4.

4 Simulation studies

To study the effectiveness of the proposed control strate-
gies, the detailed response is numerically simulated with two
benchmark non-linear underactuated mechanical systems,
that is,. the TORA system and the inertia-wheel pendu-
lum (IWP) system, in conjunction with the proposed control
laws. Simulations comparisons are also conducted with the
full-state feedback scheme signalled in Remark 4 to valid
the performance of the proposed controller.

4.1 Simulations of theTORA system

The TORA system consists of a translational oscillating
platform with mass m1 which is controlled via a rotational
eccentric mass m2. Configuration of this system is depicted
in the Fig. 1.

The Lagrange dynamics of the TORA system is formu-
lated as

{
(m1 + m2)q̈x + m2r cos(qs)q̈s − m2r sin(qs)q̇2

s + k1qx = 0
m2r cos(qs)q̈x + (m2r2 + I )q̈s + m2gr sin(qs) = τ

(70)
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Fig. 1 TORA system

Table 1 Physical parameters of TORA system

Description Parameter Value Units

cart mass m1 10 kg
arm mass m2 1 kg
arm eccentricity R 1 m
arm inertia I 1 Kg/m2

spring stiffness k1 5 N m

In view of Lemma 1, the following global change of
coordinates

{
qr = qx + (m2r sin(qs))/(m1 + m2)

pr = (m1 + m2)q̇x + m2r cos(qs)q̇s
(71)

would transform the dynamics of TORA system into a
cascade non-linear system in strict feedback form

∑
TORA-1

{
ẋ1 = (m1 + m2)

−1ẋ2

ẋ2 = −k1x1 + k1m2r sin(x3)/(m1 + m2)∑
TORA-2

{
ẋ3 = x4

ẋ4 = u

(72)

with xi(i = 1, . . . , 4) defined in (14).
In the simulation, the parameters for the TORA system

are chosen to be the same as in [23], which is given in
Table 1.

It is easy to design the virtual control law as

x̄3 = −kp tanh(x1) − kd tanh(ϑ)

ϑ = qc + bx1

q̇c = −a tanh(qc + bx1)

(73)

with

kp + kd ≤ 0.5π (74)

and it can asymptotically stabilise the
∑

TORA-1-subsystem
to its original. Based on the conclusions drawn in Remark
5, this virtual control law can be used in the following
backstepping procedure to derive the final control torque.

For the full-state feedback, the controller parameters
are chosen to be: ε3(t) = ε4(t) = 0, kp = 0.9, kd = 0.65,
IET Control Theory Appl., 2013, Vol. 7, Iss. 7, pp. 985–996
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Fig. 2 Simulated results of the TORA system

a Full-state and output-feedback comparison – cart response
b Full-state and output-feedback comparison – eccentric mass response
c Position and velocity responses of the cart
d Phase portrait of the cart
e Position and velocity responses of the eccentric mass
f Phase portrait of the eccentric mass
g Observer errors of the designed finite-time observer
h Time response of the control torque
IET Control Theory Appl., 2013, Vol. 7, Iss. 7, pp. 985–996 993
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Fig. 3 IWP system

k3 = 2 and k4 = 2. The output-feedback controller parame-
ters are chosen to be: a = 20, b = 60, ε3(t) = ε4(t) = e−0.1t ,
kp = 0.3, kd = 1.25, k3 = 2 and k4 = 4, the observer gain
are chosen to be ko1 = 10, ko2 = 40 and αo = 0.7. The
simulation results are shown in Fig. 2.

Figs. 2a and b show the comparisons between full-state
and output-feedback controllers. As it can be seen, the
closed-loop trajectory with the proposed output-feedback
controller shows an almost identical behaviour with the tra-
jectory of the full-state feedback system, concluding the
effectiveness of the proposed scheme. Figs. 2c and d show
the responses of the cart position and velocity. It could be
observed that after finite times of oscillations, the cart posi-
tion and velocity converge and stay at zero. The same is also
true for the response of eccentric mass shown in Figs. 2e
and 2f . Fig. 2g shows the observer errors of the designed
finite-time observer. It takes about 0.7 s for the finite-time
observer to precisely reconstruct the auxiliary variables x3

and x4. Then after the setting time, the observer errors stay to
zero permanently. Fig. 2h illustrates the control torque gen-
erated by the controller. Smooth control torque is generated
by the proposed output-feedback controller.

4.2 Simulations of the IWP system

The inertia wheel pendulum consists of a pendulum with
a rotating inertia-wheel at its end. The pendulum is un-
actuated and the system has to be controlled via the rotat-
ing wheel. The task is to stabilise the pendulum in its
upright equilibrium point while the wheel stops rotating. The
configuration of the IWP is shown in Fig. 3.

The Lagrange dynamics of this system can be formulated
as {

d11q̈x + d12q̈s = φ(qx)

d21q̈x + d22q̈s = τ
(75)

with

d11 = m1l2
c1 + m2l2

1 + I1 + I2

d12 = d21 = d22 = I2

φ(qx) = (m1lc1 + m2l1)g sin(qx)

(76)

where qx is the pendulum angle, qs is the disk angle, τ is
the motor torque input.
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Table 2 Physical parameters of the IWP system

Description Parameter Value Units

pendulum length l1 0.125 m
pendulum CM lc1 0.063 m
pendulum mass m1 0.020 kg
wheel mass m2 0.300 kg
pendulum inertia I1 47 × 10−6 Kg/m2

wheel inertia I2 32 × 10−6 Kg.m2

Then from Lemma 1, we know that there exists a trans-
formation of variable that transform the system into

∑
IWP-1

{
ẋ1 = d−1

11 x2

ẋ2 = (m1lc1 + m2l1)g sin(x1 − d12x3/d11)∑
IWP-2

{
ẋ3 = x4

ẋ4 = u

(77)

In the simulation, the physical parameters of the IWP system
is chosen to be the same as in [29], which gives in Table 2).

Similar to the TORA system, the asymptotic stabilisation
control law for

∑
IWP-1-subsystem can be chosen as⎧⎨

⎩
x̄3 = (x1 + kp tanh(x1) + kd tanh(ϑ))d11/d12

ϑ = qc + bx1

q̇c = −a tanh(qc + bx1)

(78)

where
kp + kd ≤ 0.5π (79)

Then based on Theorem 3, we may draw the conclusion that
the system could be locally asymptotically stabilised to zero.

For the full-state back, the controller parameters are cho-
sen to be ε3(t) = ε4(t) = 0, kp = 0.25, kd = 1.25, k3 = 2
and k4 = 2. The output-feedback controller parameters
are chosen to be, a = 15, b = 2, ε3(t) = ε4(t) = 0.01 e−0.1t ,
kp = 0.25, kd = 1.25, k3 = 20 and k4 = 20; the observer gain
are chosen to be ko1 = 10, ko2 = 20 and αo = 0.7. The
simulation results are shown in Fig. 4.

Figs. 4a and b show the comparisons between full-state
and output-feedback controllers. As it can be seen, the
closed-loop trajectory with the proposed output-feedback
controller shows an almost identical behaviour with the tra-
jectory of the full-state feedback system, concluding the
effectiveness of the proposed scheme. Figs. 4c and d show
the responses of the pendulum position and velocity. The
pendulum position stays in the range of (−0.1 rad, 0.1 Euler-
rad), which do not escape the linearly controllable area.
Even though the velocity has a big ranges of (−3 rad/s,
1 rad/s), the time response of the pendulum position and
velocity is still attractive for it only appears small overshot
and exhibits a short setting time. Figs. 4e and f show the
time responses of the rotating wheel position and velocity. It
can be observed that the maximum velocity of the rotating
wheel can be 300 rad/s, which appear during the starting
time of the simulation. However, the time response only
oscillates several times and it also has a quick setting time.
Fig. 4g shows observer errors of the designed finite-time
observer. Then setting time of observer is about 0.6s. After
the setting time, the observer error turns to zero permanently.
Fig. 4h illustrates the time response of the torque that also
appears a peaking phenomenon. Then, it goes back below
the bound of 0.5 Nm. All these prove the feasibility of the
proposed controller.
IET Control Theory Appl., 2013, Vol. 7, Iss. 7, pp. 985–996
doi: 10.1049/iet-cta.2012.0734



www.ietdl.org
Fig. 4 Simulated results of the IWP system

a Full-state and output-feedback comparison – pendulum response
b Full-state and output-feedback comparison – wheel response
c Position and velocity responses of the pendulum
d Phase portrait of the pendulum
e Angle and velocity responses of the rotating wheel
f Phase portrait of the rotating wheel
g Observer errors of the designed finite-time observer
h Time response of the control torque
IET Control Theory Appl., 2013, Vol. 7, Iss. 7, pp. 985–996 995
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5 Conclusions

The output-feedback control problem for a special class
of underactuated mechanical systems is investigated in this
paper. The transformation and reduction technique are used
for the underactuated mechanical systems to change into
the cascade nonlinear systems with structural properties that
are convenient for control design purposes. Then, a filter-
based output-feedback controller for the changed subsystem
is developed, called virtual control in sense of recursive
method, and this designed virtual control is involved, like
backstepping technique, into the another subsystem through
a series of first-order time-varying low-pass filters to develop
the actual control of the closed-loop system, in which a
finite-time observer is also used to reconstruct immeasur-
able states. The local asymptotical stability property of the
closed-loop system is analysed through the cascade system
stability criteria. Simulation of two benchmark non-linear
underactuated mechanical system is conducted to show the
feasibility of the proposed controller. While, it should be
pointed that accurate knowledge of the system dynamics
is assumed to be known in advance for the control system
design. Practically, because of the unavoidable uncertainties
in modelling, further work is still needed for the controller
design in the presence of model uncertainties.
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