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Abstract: In this paper, we propose a suboptimal distributed LQR control method, applicable
to systems coupled through both physical interconnections and the quadratic cost to be
minimized. Thanks to a novel suboptimal but distributed cost-to-go matrix update that enforces
block-diagonality, the suboptimal LQR gain matrix is structured, making the overall control
scheme distributed. Moreover, the proposed control design algorithm is scalable. Theoretical
properties of the method, including the stability of the closed-loop system, are investigated. A
case study is shown to illustrate the features of the approach.
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1. INTRODUCTION

In the last decades, the complexity of engineering sys-
tems and the connectivity between plants have continu-
ously increased. Some notable examples of new genera-
tion complex systems are power networks (Resende and
Peças Lopes, 2011), chemical plants (Farina et al., 2016)
and fleets of multi-agent autonomous vehicles (Cortés
et al., 2004).

The size of these systems has posed significant challenges
in the development of dedicated control systems (Šiljak,
1991; Lunze, 1992) and has motivated several research
efforts devoted to the design and implementation of moni-
toring, fault detection, state estimation, and control algo-
rithms. Approaches based on centralized architectures rely
upon the assumption that controllers and estimators are
integrated in a monolithic computing unit and a reliable
communication network allowing for fast and synchronous
data exchange between all the actuators and sensors is
available. This paradigm has significant shortcomings. In-
deed, as the system scale increases, the control algorithm
may become prohibitively complex and demanding in
terms of computation and communication requirements.

To overcome these problems, distributed methods have
been developed over the years, both for unconstrained (Šiljak,
1991; Lunze, 1992) and constrained (Maestre and Negen-
born, 2014) systems. Distributed algorithms assume that
the system under control can be regarded as a set of
? This work has received support from the Swiss National Sci-
ence Foundation under the COFLEX project (grant number
200021 169906).

interacting subsystems, and that a local control unit –
having both computational and communication capabil-
ities – can be integrated in each subsystem. Among the
main challenges of distributed approaches, the following
ones have received particular attention: (i) local control
algorithms should be integrated in the local computing
units and should provide stability properties, robustly for
any possible system configuration; (ii) thanks to commu-
nication and data exchange between local control units,
cooperation and system-wide optimality should be sought
for; (iii) design algorithms should be distributed in order
to meet the scalability requirements of complex plants as
well as to easily accommodate for the addition and removal
of subsystems.

In this paper we focus our attention on linear quadratic
regulators (LQR), which have been thoroughly studied in
the centralized framework, see e.g., Bertsekas (2017). Only
few notable works have addressed the design of distributed
LQRs, proposing suboptimal solutions, e.g., (Borrelli and
Keviczky, 2008; Jiao et al., 2019; Vlahakis and Halikias,
2018; Wang et al., 2016; Zhang et al., 2015; Deshpande
et al., 2012). However, the existing works have been de-
veloped under the assumption that the subsystems under
control are physically decoupled, in the sense that their
dynamics are independent with each other. In addition,
some methods assume that the quadratic cost function
has a special structure. For example, Borrelli and Ke-
viczky (2008) show that if the diagonal submatrices of
the state penalty matrix are identical and the off-diagonal
submatrices of the state penalty matrix are also identical,
the optimal control gain would have all the same sub-



matrices on the diagonal. Furthermore, the off-diagonal
submatrices are equal to each other. The authors then
propose a suboptimal controller with a similar structure
and prove the stability of the closed-loop system. Jiao et al.
(2019) show that for dynamically decoupled systems and
a state penalty matrix with the same sparsity structure as
the communication topology, the distributed LQR design
problem is a simultaneous LQR design problem, requir-
ing the existence of a common control gain to optimize
multiple subsystems’ performance. They then propose a
controller design to guarantee stability and performance
for the collective system.

In this paper we propose a distributed LQR control
method, applicable to physically coupled systems, with
general quadratic cost functions. Our method relies on a
suboptimal but distributed cost-to-go matrix update that
enforces block-diagonality. Thank to this, the time-varying
LQR gain matrix has a zero pattern that makes the over-
all control scheme distributed. More precisely, neighbor-
to-neighbor bidirectional communication is required for
cost-to-go matrix update and for computing the control
action for each subsystem. Another feature of the pro-
posed scheme is that it automatically provides a separable
Lyapunov function for the closed-loop system. Auxiliary
controllers associated with separable Lyapunov functions
are explicitly required by the majority of available dis-
tributed model predictive control algorithms (Maestre and
Negenborn, 2014). The theoretical properties of the pro-
posed method, including convergence and boundedness of
the associated Riccati-like equations and stability of the
closed-loop system are formally studied. Finally, the per-
formance of the distributed LQR is demonstrated through
simulations.

The paper is organized as follows. In Section 2, we give the
problem formulation and in Section 3, we study stability
and performance of the proposed distributed controller.
Simulation examples are given in Section 4, followed by
some concluding remarks (Section 5).

Notation: Throughout the paper, all the matrices and
vectors are assumed to have compatible dimensions. ‖ · ‖
denotes the vector 2-norm or the matrix induced 2-norm.
A′ denotes the transpose of A. A−1 denotes the inverse of
A. [Aij ] denotes a matrix whose ij-th (block) element is
Aij . diag{Ai} denotes a diagonal (block diagonal) matrix
whose i-th (block) diagonal element is Ai. [A]ij denotes
the ij-th element of A. I denotes the identity matrix. 0
denotes the matrix with all elements to be zero. We say
that a matrix X fulfills a structural constraint if certain
blocks of X are required to be zero, i.e., Xij = 0 for some
i, j. Moreover, we say that two matrices X,Y have the
same sparsity structure, if Xij = 0 implies Yij = 0 and
vice versa.

2. PROBLEM FORMULATION

Consider N physically coupled systems, each described by

xi(t+ 1) = Aiixi(t) +
∑
j 6=i

Aijxj(t) +Biui(t), (1)

for i = 1, . . . , N , where xi(t) ∈ Rni and ui(t) ∈ Rmi

are the state and control input for the i-th system, and∑
j 6=iAijxj(t) denotes the physical coupling. The inter-

connection among systems can be described by a directed
graph G = {V, E}, where V is the node set and the E is
the edge set. Each node i ∈ V represents a system, and
the edge (i, j) ∈ E exists if and only if Aij 6= 0. The in-
neighbors’ set N in

i of agent i is defined as {j : (i, j) ∈ E}.
The out-neighbors’ set N out

i of agent i is defined as {j :
(j, i) ∈ E}. The sets N in

i and N out
i may contain agent i

itself if Aii 6= 0. The adjacency matrix A ∈ RN×N for the
graph G is defined by the elements: [A]ij = 1 if Aij 6= 0
and [A]ij = 0 if Aij = 0.

We can write the collective system in a compact form as

x(t+ 1) = Ax(t) +Bu(t),

where x = [x′1, . . . , x
′
N ]′, A = [Aij ], B = diag{Bi},

u = [u′1, . . . , u
′
N ]′. In this paper, we are interested in

the infinite-horizon LQR control problem, i.e., to design a
control law u(t) such that the following LQR performance
is minimized

J =

∞∑
t=0

x(t)′Qx(t) + u(t)′Ru(t),

where Q = [Qij ] ≥ 0, R = diag{Ri} ≥ 0. It is known
that the optimal centralized control law is given by u(t) =
K∗x(t) with

K∗ = −(B′S∗B +R)−1B′S∗A, (2)

where S∗ is the solution to the following Riccati equation

S∗ = A′S∗A+Q−A′S∗B(B′S∗B +R)−1B′S∗A.

Moreover, the optimal cost is given by J∗ = x(0)′S∗x(0).

However, computing the control law ui from (2) could
require the knowledge of xj for all j = 1, . . . , N . When
the number N of subsystems is high, such a centralized
controller becomes prohibitive, both in terms of computa-
tion and communication requirements.

In this paper, we will study distributed solutions where
the computation of ui requires only system i’s neighbors’
states. In other words, we would like to design a con-
troller gain K with the same sparsity structure as A. As
shown in (Rotkowitz and Lall, 2006), solving optimization
problems with controller sparsity structure constraints can
be extremely difficult. To circumvent this issue, we will
develop a suboptimal approach.

It is clear from (2) that, if S∗ was block diagonal, K∗

would have the same sparsity structure as A, making
also the control law distributed. Therefore, in this paper,
we propose a suboptimal controller design, where S∗ is
approximated by a block diagonal matrix P (t) to generate
the controller gain K(t). Moreover, we require that P (t)
is an upper bound to the cost-to-go matrix, with which
we can guarantee the stability of closed-loop system by
studying the boundedness of P (t).

3. MAIN RESULTS

In this section, we first describe the controller design and
then analyze the asymptotic stability and performance of
the closed-loop system.

3.1 Controller Design

Collectively, the proposed control law is u(t) = K(t)x(t)
with



K(t) = −(B′P (t)B +R)−1B′P (t)A, (3)

where P (t) = diag{Pi(t)} is calculated from the following
iteration for t = 0, 1, 2, . . . and i = 1, . . . , N

Pi(t+ 1) =
∑

j∈N out
i

A′jiP
F
j (t)Aji +Qi +

∑
j∈N out

i
,j 6=i

‖Qij‖I

+
∑

k∈N out
i

‖A′ki‖‖PFk (t)‖(
∑

j∈N in
k
,j 6=i

‖Akj‖)I, (4)

with

PFj (t) = Pj(t)

− Pj(t)Bj(B′jPj(t)Bj +Rj)
−1B′jPj(t). (5)

From the collective control law (3), the control law for each
agent i is given by

ui(t) =
∑
j∈N in

i

Kij(t)xj(t), (6)

where

Kij(t) = −(B′iPi(t)Bi +Ri)
−1B′iPi(t)Aij . (7)

Some remarks are now in order. First notice that, since
P (t) is block-diagonal, as previously described, the control
law ui depends only on the states xj , j ∈ N in

i , which must
be measured and made available to the controller of system
i through a communication network. Second, for comput-
ing Pi(t), we require information from the out-neighbors of
system i. Indeed, (i) the term

∑
j∈N out

i
A′jiP

F
j (t)Aji in (4)

can be updated using the matrices Pj(t) and Aji from all
j ∈ N out

i ; (ii) the term∑
k∈N out

i

‖A′ki‖‖PFk (t)‖(
∑

j∈N in
k
,j 6=i

‖Akj‖)I

in (4) depends on matrices Pk(t), Aki, Akj . Pk(t) and Aki
can be obtained from the out-neighbor k of agent i.
Moreover, Akj can also be obtained from the out-neighbor
k of agent i since agent k has access to the coupling matrix
Akj for j ∈ N in

k .

The distributed LQR algorithm we propose in this paper
is formally described in Algorithm 1.

Remark 1. The proposed control law is a variant of the
value iteration in approximate dynamic programming,
see (Bertsekas, 2017). In value iteration, the following
Centralized Riccati Iteration (CRI) is used to approximate
the optimal cost S∗

S(t+ 1) = A′S(t)A+Q

−A′S(t)B(B′S(t)B +R)−1B′S(t)A. (8)

In contrast, we propose to use a block diagonal matrix P (t)
generated from (4) and (5) to approximate S∗. Moreover,
similar to the value iteration, the control law K(t) is
obtained from the Bellman equation assuming the optimal
cost-to-go matrix is approximated by P (t), i.e.,

K(t) = arg min
K

x(t)′Qx(t) + x(t)′KRKx(t)

+ (Ax(t) +BKx(t))′P (t)(Ax(t) +BKx(t)).

Remark 2. If a new system N + 1 is added at time k̄,
the new controller can be produced by setting PN+1(k̄) =
0 and receiving pieces of information from neighboring
systems only. Moreover, the addition of system N + 1
impacts only the update equations (4) and (5) associated

Algorithm 1 Distributed LQR algorithm

Memory requirements
For i ∈ V, system i stores in memory the matrices Bi,
Ri, Aii, {Qij ; j ∈ N out

i } ,
{
Ajk; j ∈ N out

i , k ∈ N in
j , k 6= j

}
,

Pi(t),
{
PFj (t); j ∈ N out

i

}
,
{
Kij(t); j ∈ N in

i

}
and the vec-

tors ui(t),
{
xj(t); j ∈ N in

i

}
.

Initialization
For i ∈ V, system i initialize Pi(0) = 0.

On-line implementation
At each iteration t ≥ 0 system i:

1) Measures xi(t) and broadcasts it to its out-neighbors;
2) Gathers from its in-neighbors the information{
xj(t); j ∈ N in

i , j 6= i
}

;

3) Computes
{
Kij(t); j ∈ N in

i

}
as in (7), and, accord-

ingly, ui(t) as in (6);
4) Applies ui(t) as in (1);
4) Computes PFi (t) as in (5) and broadcasts it to its
in-neighbors;
5) Gathers from its out-neighbors the information{
PFj (t); j ∈ N out

i , j 6= i
}

;
6) Computes Pi(t+ 1) as in (4).

to neighboring systems. Therefore, controllers of systems
j ∈ V \ N out

N+1 are not modified. This guarantees the
scalability of the proposed design method.

In the following, we will show that if certain conditions are
satisfied, K(t) converges to a stabilizing gain.

3.2 Asymptotic Stability of the Closed-loop System

In this section, we state the main result of the paper, i.e.,
the conditions guaranteeing the stability of the closed-loop
system. The following assumption is needed.

Assumption 3. Aii is invertible for all i ∈ V.

Under Assumption 3, we can show that if we initialize
Pi(0) appropriately and suitable conditions on the cou-
pling between systems are satisfied, the matrices P (t) and
K(t) converge to constant values P̄ and K̄. Moreover, K̄
is stabilizing. The result is stated as follows.

Theorem 4. Initialize Pi(0) = 0 for all i ∈ V. Let Fi =
Aii+BiKi with Ki ∈ Rmi×ni , F = diag{‖Fi‖2} and define
the matrix Γ as

[Γ]ij =


1 +

∑
k 6=i

‖A−1ii ‖
2‖Aii‖‖Aik‖ j = i,

‖A−1jj Aji‖
2 +

∑
k 6=i

‖A−1jj ‖
2‖Aji‖‖Ajk‖ j 6= i.

If there exist Ki for i = 1, . . . , N such that

ρ(FΓ) < 1, (9)

then

lim
t→−∞

P (t) = P̄ , lim
t→−∞

K(t) = K̄

and K̄ is such that A+BK̄ is Schur stable.

The proof of Theorem 4 is provided in the Appendix.
Verifying the stability conditions in Theorem 4 requires
to build the product of the N ×N matrices F and Γ. On



the one hand, this computation is centralized. On the other
hand, we highlight that the size of matrices F and Γ scales
with the number of systems only. The matrix Γ captures
the magnitude of coupling between systems. For decoupled
systems, one has Γ = I and (9) can be always fulfilled if
all local systems are stabilizable. The condition (9) also
calls for the solution of the nonlinear optimization problem
minKi ρ(FΓ). An alternative is to manually select Ki and
then check whether the condition ρ(FΓ) < 1 is satisfied.
A first heuristic method of selecting Ki is to let Ki solve
the optimization problem minKi ‖Aii +BiKi‖, which can
be cast into the following LMI problem

min
Ki,γ

γ

s.t.

[
γI (Aii +BiKi)

′

(Aii +BiKi) I

]
≥ 0.

The motivation is that if ‖Aii + BiKi‖ = 0 for all i,
ρ(FΓ) = 0 < 1. Therefore, by selecting Ki to make ‖Aii +
BkKi‖ as small as possible, we expect that ρ(FΓ) < 1.
Another heuristic method is to run the iteration (4) for
a sufficiently long time, use the final Pi(t) to construct
Ki = Kii(t) with Kii(t) = −(B′iPi(t)Bi+Ri)

−1B′iPi(t)Aii
and use such Ki for verifying ρ(FΓ) < 1. This procedure is
justified by the fact that if Pi(t) converges and K̄ is stabi-
lizing, we can expect that the finite horizon approximation
Kii(t) is likely to fulfill the stability condition ρ(FΓ) < 1.

4. SIMULATIONS

We consider a composition of N = 6 systems. For i ∈
{1, 2, ..., 6}, we set Aii =

[
0.9 0.1
0.1 −0.9

]
, Bi = [ 1 0

0 1 ], and for
i, j ∈ {1, . . . , 6}, let α > 0 and

Aij =

{
diag(α,−α) if |i− j| = 1

0 otherwise.

For the LQR control problem, we set the symmetric
matrices Qii = Ri = I for i = 1, . . . , 6 and Qij = 0 for
i 6= j. For each system, we compare its behaviour when
using (i) K∗ i.e., the static gain from the infinite horizon
centralized LQR controller (2), (ii) K(t) as proposed in
our paper, (iii) Kd(t) obtained by the dualisation of the
Partition-Based Distributed Kalman Filter from (Farina
and Carli, 2018), which is given by Kd(t) = [Kd,ij(t)] with

Kd,ij(t) = −(B′iPi(t)Bi +Ri)
−1BiPi(t)Aij , (10)

Pi(t+ 1) =
∑

j∈N out
i

Ã′jiP
F
j (t)Ãji +Qi, (11)

where PFj (t) is given as in (5); Ãji =
√
|N in

j |Aji and |N in
j |

is the cardinality of N in
j .

In Figure 1, we show the response for the first system when
α = 0.4, T = 100 and initial conditions of each system are
x = [100,−50]

′
. We plot the system response of the first

system using K∗, K(t) and Kd(t), where it can be seen
that the temporal response converges to [0, 0]′ when using
K∗ and K(t) but diverges when using Kd(t). Besides, the
response with K∗ and K(t) are close to each other, which
demonstrates the effectiveness of the proposed controller.
Responses of other systems are not shown since they have
a similar evolution.

Figure 2 shows the spectral radius of A + BK with
respect to α when K is equal to K∗, K(T ) and Kd(T ),

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9 10
-50

0

50

Fig. 1. Temporal response of the first system state vari-
ables x1,1(t) and x1,2(t) under different controllers.
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Fig. 2. Values of ρ(A + BK) as a function of α under
different controllers.

after T = 100 iterations of (4) and (11), respectively. In
the considered situations, we can verify that the gains
K(t) and Kd(t) converge to constant values after T =
100 iterations. From Figure 2, it is clear that in spite
of the coupling between systems, the collective system
remains stable when using our proposed controller K(t).
In contrast, if the controller Kd(t) is used, the coupling
α should be sufficiently small (in this case, α < 0.36) in
order to preserve stability of the closed-loop system.

We verify Theorem 4, by corroborating that if ρ(FΓ) < 1
then the closed-loop system is stable. In order to ob-
tain FΓ, we calculate Γ from Theorem 4, and F =
diag{‖Aii +BiKi‖2} using Ki = Kii(T ) obtained after
T = 100 iterations of (4). Figure 3 presents ρ(FΓ) for
α ∈ [0, 6]. As ρ(FΓ) < 1, from Theorem 4, we can conclude
that the asymptotic control gain K̄ is stabilizing, which is
also reflected in Figure 2.

Finally, we evaluate the finite-horizon cost

T∑
t=0

x′(t)Qx(t) + u′(t)Ru(t)

when using the three different control laws for α =
{0.1, 0.2, 0.3}. Table 1 summarises the obtained results, for
the finite-horizon LQR with T = 100. As it is expected,
the performance of our controller K(t) is suboptimal but
improves over Kd(t).
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Table 1. Cost-to-go of the T -step finite-horizon
LQR performance, for different coupling values

and different controllers

K∗ K(t) Kd(t)

α = 0.1 5.47× 104 7.27× 104 7.54× 104

α = 0.2 7.76× 104 11.3× 104 14.8× 104

α = 0.3 10.6× 104 17.0× 104 45.2× 104

5. CONCLUSIONS

This paper studied the distributed LQR control design
for physically coupled systems. Different from other con-
tributions available in the literature, we do not assume
any structure for the state penalty matrix in the LQR
performance index. We propose a suboptimal distributed
control law. Moreover, we study the asymptotic perfor-
mance of the closed-loop system and show that under mild
conditions, asymptotic stability can be guaranteed. Fur-
ther research will consider the development of distributed
output feedback controllers with stability guarantees by
combining the partitioned Kalman filter in (Farina and
Carli, 2018) with the distributed LQR scheme proposed in
this paper.

APPENDIX: PROOF OF THEOREM 4

To prove Theorem 4, we first need to state and prove
some preliminary results. The following lemma is needed
during the proof and is stated first, which is the Gersgorin
theorem for block matrices.

Lemma 5. (Theorem 6.3 of (Varga, 2010)). Consider A =
[Aij ]. Let σ(·) denotes the spectrum of a matrix and

Gi = σ(Aii) ∪ {λ /∈ σ(Aii) :
1

‖(λI −Aii)−1‖
≤
∑
j 6=i

‖Aij‖},

then σ(A) ∈ ∪iGi.
Lemma 6. In the iteration (4), one has

P (t+ 1) ≥ A′PF (t)A+Q,

where PF (t) = diag{PFi (t)}.

Proof. Since [A′PF (t)A]ij =
∑
k A
′
kiP

F
k (t)Akj , we have

that

[P (t+ 1)−APF (t)A′ −Q]ij

=


∑
l 6=i

∑
k

‖A′ki‖‖PFk (t)‖‖Akl‖I +
∑
l 6=i

‖Qil‖I j = i

−
∑
k

A′kiP
F
k (t)Akj −Qij j 6= i

In view of the Lemma 5, the eigenvalues of P (t + 1) −
A′PF (t)A−Q are in the region

∪i

λ :

∣∣∣∣∣∣λ−
∑
j 6=i

(∑
k

‖A′ki‖‖PFk (t)‖‖Akj‖+ ‖Qij‖

)∣∣∣∣∣∣
≤
∑
j 6=i

∥∥∥∥∥−∑
k

A′kiP
F
k (t)Akj −Qij

∥∥∥∥∥
 ,

which is included in the right half complex plain. Since
P (t+1)−A′PF (t)A−Q is symmetric, we know P (t+1)−
A′PF (t)A−Q ≥ 0, which concludes the proof. �

The monotonicity property of the P (t) iteration is stated
in the following lemma.

Lemma 7. Let PAi (t) ∈ Rni×ni and PBi (t) ∈ Rni×ni be
two positive semidefinite matrices. Let PAi (t + 1) and
PBi (t + 1) be the matrices produced by (4) and (5) when
selecting Pi(t) = PAi (t) and Pi(t) = PBi (t), respectively.
Suppose PAi (t) > PBi (t) for all i. Then PAi (t+1) > PBi (t+
1) for all i.

Proof. From the definition of Pi(t + 1) in (4), we only
need to prove that A′jiP

F
j (t)Aji and ‖A′ki‖‖PFk (t)‖‖Akj‖

are monotonic with respect to Pi(t). The monotonicity of
A′jiP

F
j (t)Aji with respect to Pi(t) follows from Lemma

1.c in (Sinopoli et al., 2004). Therefore, we only need
to prove the monotonicity of ‖A′ki‖‖PFk (t)‖‖Akj‖ with
respect to Pi(t). Let PAFk (t) denote the matrix PFk (t)
when Pk(t) = PAk (t). Assume PBFk (t) is defined similarly.

Assume PAk > PBk , since PFk = (P−1k + BkR
−1
k B′k)−1, we

have PAFk > PBFk . Therefore,

‖A′ki‖‖PAFk (t)‖‖Akj‖ > ‖A′ki‖‖PBFk (t)‖‖Akj‖,
which means ‖A′ki‖‖PFk (t)‖‖Akj‖ is monotonic with re-
spect to Pi(t). The proof is completed. �

Next, we will show the boundedness of the P (t) iteration.
The result is stated in the following lemma.

Lemma 8. If (9) holds, the sequence of matrices P (t)
generated from (4) is bounded for all t.

Proof. From the definition of Pi(t+ 1), we have that

Pi(t+ 1) = PLi (t+ 1) + ∆i(t+ 1) + Si(t+ 1) + Q̃i,

where

∆i(t+ 1) =
∑
j 6=i

A′jiP
F
j (t)Aji,

Si(t+ 1) =
∑
j 6=i

∑
k

‖A′ki‖‖PFk (t)‖‖Akj‖I,

PLi (t+ 1) = A′iiP
F
i (t)Aii, Q̃i = Qi +

∑
j 6=i

‖Qij‖I.

Since Aii is invertible, we have that

PFi (t) = (A′ii)
−1PLi (t+ 1)A−1ii .



Therefore, we obtain

∆i(t+ 1) =
∑
j 6=i

A′ji(A
′
jj)
−1PLj (t+ 1)A−1jj Aji,

Si(t+ 1) =
∑
j 6=i

∑
k

‖A′ki‖‖(A′kk)−1PLk (t+ 1)A−1kk ‖‖Akj‖I,

which further implies

PLi (t+ 1) = A′iiP
F
i (t)Aii

= (Aii +BiKii(t))
′Pi(t)(Aii +BiKii(t)) +Kii(t)

′RiKii(t)

(a)

≤ (Aii +BiKi)
′Pi(t)(Aii +BiKi) +K ′iRiKi

= F ′iPi(t)Fi +K ′iRiKi

= F ′i (P
L
i (t) + ∆i(t) + Si(t))Fi +K ′iRiKi + F ′i Q̃iFi

= F ′i (P
L
i (t) + ∆i(t) + Si(t))Fi + δi, (12)

where (a) follows from the fact that Kii(t) minimizes
(Aii +BiKi)

′Pi(t)(Aii +BiKi) +K ′iRiKi for any Ki and

δi = K ′iRiKi + F ′i Q̃iFi. Since

‖∆i(t)‖ = ‖
∑
j 6=i

A′ji(A
′
jj)
−1PLj (t)A−1jj Aji‖

≤
∑
j 6=i

‖A−1jj Aji‖
2‖PLj (t)‖

and

‖Si(t)‖ ≤
∑
j 6=i

∑
k

‖A−1kk ‖
2‖Aki‖‖Akj‖‖PLk (t)‖

=
∑
j

∑
k 6=i

‖A−1jj ‖
2‖Aji‖‖Ajk‖‖PLj (t)‖,

where the last equation is obtained via the swap of index
j, k, from (12), we have

‖PLi (t+ 1)‖ ≤ ‖Fi‖2
‖PLi (t)‖+

∑
j 6=i

‖A−1jj Aji‖
2‖PLj (t)‖

+
∑
j

∑
k 6=i

‖A−1jj ‖
2‖Aji‖‖Ajk‖‖PLj (t)‖

+ ‖δi‖

= ‖Fi‖2(Γii‖PLi (t)‖+
∑
j 6=i

Γij‖PLj (t)‖) + ‖δi‖.

Therefore, we have that

‖PL(t+ 1)‖ ≤ FΓ‖PL(t)‖+ ‖δ‖,
where with a slight abuse of notion ‖PL‖ = [‖PL1 ‖, . . . ,
‖PLN‖]′ and ‖δ‖ = [‖δ1‖, . . . , ‖δN‖]′. Therefore, if ρ(FΓ) <
1, we have that PLi (t+1) is bounded, which further implies
the boundedness of Pi(t+ 1). The proof is completed. �

Now we are in the position to prove Theorem 4.

Proof. Since Pi(1) = Q̃i > Pi(0) = 0, in view of
Lemma 7, we can show that Pi(t + 1) > Pi(t) for all t
by induction. Therefore P (t) is monotonically increasing
with respect to time t. Moreover, since ρ(FΓ) < 1, P (t) is
bounded from Lemma 8. Therefore P (t) andK(t) converge
to some constant value P̄ , K̄ as t → ∞. Besides, in view
of Lemma 6, P̄ , K̄ should satisfy that

P̄ > (A+BK̄)′P̄ (A+BK̄).

Therefore, A+BK̄ is Schur stable. �
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