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SUMMARY

This paper deals with the task-space trajectory tracking control problem of robot manipulators. An improved
adaptive backstepping controller is proposed to deal with the uncertainties in kinematics, dynamics, and actu-
ator modeling. To avoid the explosion of computation in conventional backstepping techniques, a modified
dynamic surface control algorithm is proposed, which guarantees the asymptotic convergence rather than the
uniformly ultimately boundedness of tracking errors in conventional dynamic surface control methods. Fur-
thermore, the expression of the L2 norm of tracking errors is explicitly derived in relation to the controller
parameters, which provides instructions on tuning controller parameters to adjust the system performance.
Moreover, the passivity structure of the designed adaptation law is thoroughly analyzed. Simulation of a
free-floating space robot is used to verify the effectiveness of the proposed control strategy in comparison
with the conventional tracking control schemes. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The design of a robust control system for robot manipulators in the presence of model uncertainties
is one of the most challenging tasks for control engineers. In the past decades, several control algo-
rithms are proposed to fulfill this objective (for example, References [1, 2]). The design of those
controllers relies on the assumption that the exact kinematics (i.e., the Jacobian matrix) of robot
manipulators is known. Unfortunately, in real world, physical parameters cannot be measured pre-
cisely. Furthermore, when the robot picks up objects of different lengths or unknown orientations,
the overall kinematics is changing and therefore difficult to derive the mathematical model exactly.
All these difficulties suggest that the kinematic uncertainties must be taken into consideration when
designing task-space tracking controllers for robot manipulators.

To solve the regulation problem in the presence of kinematic uncertainties, proportional-
differential (PD) [3, 4], adaptive Jacobian [5, 6], transpose Jacobian [7], and inverse Jacobian [8]
control laws have been proposed for fixed-base manipulators to achieve task-space regulation
objectives. Actually, both the latter two strategies are dual, as stated in Reference [9]. Amplitude-
limited torque input controller [10] and adaptive set point controller [11] are proposed with an
emphasis on the actuator constraints. Task-space tracking control problem, on the other hand,
is also highly concerned in the robot research community. Adaptive Jacobian [12–17], inverse
kinematics [18, 19], and prediction error-based [20, 21] control algorithms are proposed to cope
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with robot tracking control problems in the presence of both kinematic and dynamic uncertainties. In
addition, both neural [22] and adaptive Jacobian controllers [23] are proposed when taking uncertain
actuator models into consideration. However, in the aforementioned control schemes, the linear-in-
parameters assumption for uncertainties in kinematics is needed. Unfortunately, for some specific
robot manipulator systems, such as the free-floating space manipulators, owing to the second-
order non-holonomic constraints caused by the conservation of angular momentum, the generalized
Jacobian matrix [24] of the free-floating space robot is no longer linear with respect to a set of
physical parameters [25].

Backstepping technique provides a systematic approach for construction of Lyapunov functions
to a broad class of strict-feedback nonlinear systems. Because of its simple configuration and ease
of implementation, this control strategy has been widely applied to various control systems, such
as attitude control systems [26], robot manipulators [27], unmanned aerial vehicles [28], and multi-
agent systems [29]. However, there is one main issue with this method, that is, the explosion of
complexity caused by the need of the derivatives of the designed virtual input. It requires also the
known system functions to be C n smooth when the nonlinear system has a relative degree of n.
To overcome the aforementioned drawbacks of the backstepping design, a new technique named
dynamic surface control (DSC) was proposed [30, 31]. By introducing a low-pass filter to prevent
the derivative of nonlinear functions at each design step, the phenomenon of explosion of complexity
is eliminated. Thus, the dynamic surface control methods are widely developed [32–35]. However,
the results of those existing research works only guarantee the uniform and ultimate boundedness of
the tracking error. For more accurate control purpose, the asymptotic stability of the tracking error
should be achieved.

This paper deals with the task-space trajectory tracking control of robot manipulators. An
improved intelligent dynamic surface controller is proposed to deal with the kinematic, dynamic,
and actuator uncertainties. The proposed controller does not require the kinematics to be linear
with respect to a set of physical parameters. Besides, unlike conventional dynamic surface con-
trol methods, the asymptotic stabilization of the tracking error can be achieved. Furthermore,
the explicit relation among the L2 transient performance of the tracking error and the controller
gains is deduced, and thus, the control performance can be guaranteed by appropriately selecting
controller parameters.

The paper is organized as follows: In Section 2, a formal problem statement accompanied by all
the governing equations is presented. In Section 3, the control scheme and the associated stability
analysis for the resulting closed-loop dynamics are investigated. Section 4 provides the passivity
analysis of the designed controller. Numerical simulation results are presented in Section 5, and the
paper is ended with some concluding remarks.

Notions: Throughout the paper, let R be the real number and Rn denote the space of real
n-dimensional vector. 1n is an n-dimensional vector with all elements equal to one. AT and A�1

denote the transpose and inverse/pseudo-inverse of the matrix/vector A. The norm of vector x is
defined as kxk D

p
xTx. The matrix norm is defined as kAk D

p
�max.A

TA/, with �max.�/ denot-
ing the maximum eigenvalue of ATA. The Frobenius norm of matrix is defined as the root of the
squared sum of all diagonal elements, that is, kAk2F D tr.ATA/, where the trace tr.A/ satisfies
tr.A/ D tr.AT/, tr.BC / D tr.CB/ for any A 2 Rn�n, B 2 Rm�n, and C 2 Rn�m. For piece-
wise continuous, squared, and integrable function f W Œ0;1/ ! Rn, the L2 norm is defined by

kf kL2 D
qR1

0
f .t/Tf .t/dt . We say f is bounded (i.e., f 2 L1Œ0;1/) if kf .t/k < 1 for all

t 2 Œ0;1/.

2. MODELING AND PROBLEM FORMULATION

The dynamics of a n-link, serially connected, revolute rigid robot manipulator is given as
follows [2]

B.q/ Rq C V .q; Pq/ D � (1)
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where q 2 Rn denotes the manipulator joint angles; B.q/ represents the positive-definite
and symmetric robot inertial matrix; V .q; Pq/ contains the nonlinear centripetal, Coriolis and
gravitational forces and � 2 Rn is the torque applied on manipulators.

Let x 2 Rm represent a task-space vector relating to the position and orientation of manipulator
end-effectors, then the motion rate of the end-effector is related to that of joint angles by

Px D J .q/ Pq (2)

The matrix J 2 Rm�n is the Jacobian matrix. For simplicity, the manipulator is assumed to be
driven by armature-controlled direct current (DC) motors. The dynamics of this type of motor is
described as follows [22]

� D k� i ; LPi CRi C ke Pq D u (3)

where i ;u 2 Rn denote the armature current and the voltage vector, respectively; k� 2 Rn�n is
the positive definite constant diagonal matrix characterizing electro-mechanical conversion between
current and torque; L;R;ke 2 Rn�n are positive-definite constant diagonal matrices representing
the circuit inductance, resistance, and back electromotive force constant of the motor, respectively.

This paper concerns with the inertially referenced task-space trajectory tracking control problems
in the presence of kinematics, dynamics, and actuator uncertainties. For general robot manipulators,
the Jacobian matrix J .q/ is linear with respect to a set of physical parameters. The adaptive Jacobian
scheme proposed in [14, 23] can be applied to solved this problem. However, for some special
manipulator systems, such as the free-floating space manipulators, the Jacobian cannot be written in
a linear form with respect to a set of physical parameters [25]. It is thus impossible to directly extend
the existing adaptive Jacobian schemes to free-floating space manipulators, and this fact motivated
us to provide a potential solution to such a control design problem. By exploiting the unique learning
and nonlinearities handling capability of neural networks, together with first-order low-pass filter
with time-varying gain techniques, an improved intelligent/adaptive dynamic surface controller is
proposed for solving task-space trajectory tracking control problem of such robotic systems in this
paper as to be presented subsequently.

3. MAIN RESULTS

Careful inspection of the dynamics (1), (2) and (3) suggests a cascade structure that is suitable
for a backstepping control design. A revised adaptive/intelligent dynamic surface control tech-
nique is therefore proposed in this section to avoid the explosion of complexity and also to achieve
asymptotic convergence of the tracking error.

3.1. Controller synthesis

Based on the estimated physical parameters of the robot manipulator system, the nominal values
for system matrices can be calculated and nominated here as J 0;B0;V 0;L0;R0;k�0;ke0. The
subsequent development is based on the assumption that all kinematic singularities associated with
J 0.q/ are assumed to be avoided. Then the backstepping design procedure is stated as follows:

Step (1): Define the error variable ´1 D x�xd , where xd is the desired inertially referenced tra-
jectory and its time derivatives up to the third order are assumed to be continuously differentiable
and bounded for all t > 0. The derivative of ´1 from (2) is

Ṕ1 D Px � Pxd D J 0 Pq C„1 � Pxd

with the lump uncertainty „1 defined as „1.q; Pq/ D J Pq � J 0 Pq, which will be estimated with
a radial basis function (RBF) neural network.

From the neural network function approximation theory [36], there always exists an optimal
RBF neural network that can approximate the unknown function „1 with arbitrary accuracy,
that is, there exists an optimal weight matrix W 1 and a residual "1, such that „1.q; Pq/ D
W T
1‚1.q; Pq/C"1, where‚1.�/ are the basis functions of the neural networks. In the following
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deduction, the upper bounds of W 1, "1 are denoted as �W1 , �"1 , that is, kW 1kF 6 �W1 ,
k"1k 6 �"1 .

Following the philosophy of the task-space inverse dynamics controller design [2], the virtual
control vector for Pq is designed as

Pq D J�10

�
�k1´1 C Pxd � O„1

�
(4)

where k1 is a positive constant to be determined and O„1 is the function approximation of „1
using RBF neural network.

The filtered virtual control input Pqf is obtained from the following time-varying first-order
low-pass filter

�2.t/ Rqf C Pqf D
NPq; Pqf .0/ D

NPq.0/ (5)

where �2.t/ will be designed in the following parts.
Step (2): Define the second error vector as ´2 D Pq � Pqf , and the derivative of ´2 from (1) then
can be written as

Ṕ2 D Rq � Rqf D B
�1
0 .� � V 0/C„2 � Rqf

where „2.q; Pq; Rq/ D Rq C B
�1
0 .V 0 �B Rq � V / and will be approximated with RBF neural

network, that is, „2.q; Pq; Rq/ D W 2
T‚2.q; Pq; Rq/ C "2 with W 2, "2 similarly defined and

kW 2kF 6 �W2 ; k"2k 6 �"2 . Similar to the inverse dynamics control law design [2], the
virtual control variable for � is designed to be

N� D V 0 CB0

�
�k2´2 � J 0

T´1 C %1J 0
TJ 0y2 � %1J 0

T Os � O„2 C Rqf

�
(6)

where k2; %1 are both positive constants to be determined; O„2 is the function approximation of
„2 with an RBF neural network; y2 is the difference between the filtered and designed virtual
control input of Pq, that is, y2 D Pqf � NPq; and the task-space sliding variable Os is defined as

Os D OPx � Pxd C k1.x � xd/ D J 0 Pq C O„1 � Pxd C k1.x � xd / (7)

The filtered virtual control input �f is obtained from the following time-varying first-order filter

�3.t/ P�f C �f D N�; �f .0/ D N�.0/ (8)

where the filter gain �3.t/ will be designed in the following parts.
Step (3): Define the third error variable as ´3 D ���f . The derivative of ´3 from (3) is given by

Ṕ3 D P� � P�f D k�0L
�1
0

�
u �R0k

�1
�0
� � ke0 Pq

�
C„3 � P�f

where „3.�; P�; Pq/ D P� C k�0L
�1
0

�
R0k

�1
�0
� C ke0 Pq �Lk

�1
� P� �Rk

�1
� � � ke Pq

�
and will be

approximated with an RBF neural network, that is, „3.�; P�; Pq/ D W T
2‚.�; P�; Pq/ C "3 with

kW 3kF 6 �W3 , k"3k 6 �"3 .
The actual control signal u is finally designed as

u D R0k
�1
�0
� C ke0 Pq CL0k

�1
�0

�
� O„3 � k3´3 � .B0

�1/
T
´2 C P�f

�
(9)

with O„3 representing function approximation of „3 using RBF neural network, that is, O„3 D
OW

T
3‚3 C O"3.
In the following, the approximation errors of RBF neural networks are denoted as Q„i ,

„i � O„i D .W i � OW i /
T‚i C ."i � O"i / , QW

T
i‚i C Q"i ; i D 1; 2; 3.
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3.2. Stability analysis

Define y3 as the differences between �f and N�, that is, y3 D �f � N�. Define the variables

P2

�
´1; ´2;y2;xd ; Pxd ; Rxd ;

POW 1

�
, � PNPq, P3

�
´1; ´2; ´3;y2;y3;xd ; Pxd ; Rxd ;

POW 1;
POW 2

�
, � PN�.

Using ´1; ´2; ´3;y2;y3 as new system coordinates, with the designed control input (4), (6), and
(9), the error dynamics for states ´1; ´2; ´3 can be expressed as

8̂̂<
ˆ̂:
Ṕ1 D �k1´1 C J 0´2 C J 0y2 C Q„1

Ṕ2 D �J
T
0´1 � k2´2 CB

�1
0 ´3 C %1J 0

TJ 0y2 CB0
�1y3 � %1J

T
0 OsC

Q„2

Ṕ3 D �.B0
�1/

T
´2 � k3´3 C Q„3

(10)

The dynamics for y i .i D 2; 3/ can be formulated as

8̂̂
<
ˆ̂:
Py2 D �

y2

�2.t/
CP2

Py3 D �
y3

�3.t/
CP3

(11)

Here, the following lemma is needed in the stability analysis and is stated in the following.

Lemma 1
There exist time-varying positive functions ı.t/ converging to zero as t !1 and satisfying

lim
t!1

tZ
0

ı.!/d! D � <1 and Pı.t/ D �l.t/ı.t/

with finite constants � and functions l.t/ > 0.

Remark 1
Note that there are many choices for ı.t/ that satisfy Lemma 1. For example, e�l1t .l1 > 0/,
.1C t /�l2 .l2 > 1/.

Define the bound for the nominal function of J 0 andB�10 as�J0 and�B�1
0

, that is, kJ 0k 6 �J0 ,��B0�1�� 6 �B�1
0

. The main result of this paper is stated in the following theorem.

Theorem 1
For the robot manipulator system represented by (1), (2), and (3), if the control law is defined as
(4), (6), and (9) and the parameter updating laws are chosen as

8̂̂<
ˆ̂:
POW 1 D

1

ˇ1
‚1.´1 C 2%1s � 2%1J 0y2/

T �
˛1

ˇ1
k´1k

2 OW 1

PO"1 D
1

�1
.´1 C 2%1s � 2%1J 0y2/ �

�1

�1
jj´1jj

2 O"1

(12)

8̂̂<
ˆ̂:
POW i D

1

ˇi
‚i´i

T �
˛i

ˇi
k´ik

2 OW i

PO"i D
1

�i
´i �

�i

�i
jj´i jj

2 O"i

.i D 2; 3/ (13)

where s D Px � Pxd C k1.x � xd/; ˛i ; ˇi ; �i ; �i ; %1 .i D 1; 2; 3/ are arbitrary positive constants;
the controller parameters are designed to satisfy
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k1 >
�J0
2
C ˛1

�W1
2

4
C �1

�"1
2

4

k2 >
�B0�1

2
C ˛2

�W2
2

4
C �2

�"2
2

4

k3 > ˛3
�W3

2

4
C �3

�"3
2

4

(14)

and the filter gains for (5), (8) are selected to be

�i .t/ D %iıi .t/ i D 2; 3 (15)

where ıi .t/ are positive functions satisfying Lemma 1 with
R1
0 ıi .t/dt D �i i D 2; 3 and

0 < %2 6
2

ı2.0/C�J0

0 < %3 6
2

ı3.0/C�B�1
0

(16)

then given any positive number p, for all initial conditions satisfying S W V1.0/C V2.0/ 6 2p, with
V1; V2 defined later, the following results for the closed-loop system can be obtained

(i) The task-space tracking error converges asymptotically to zero, that is, limt!1 k´1k D 0.
(ii) All the signals in the closed-loop system are bounded.

(iii) The following L2 transient tracking performance bounds can be guaranteed.

kx � xdkL2 6
 
�pV.0/C

�2�P2
2 C �3�P3

2

2

!1=2
(17)

k Px � PxdkL2 6
�
�dV.0/C

�
4�2J0 C 2k1

2 C 2
� �
�2�P2

2 C �3�P3
2
��1=2

(18)

with �p D 1
�1
; �d D

4k1
2

�1
C

4�2
J0

�2
C

4�2
J0

�4
C 4

%1
.

Proof

(i) : Define candidate Lyapunov functions

V1 D
1

2

3X
iD1

h
´T
i ´i C ˇi tr

°
QW

T
i
QW i

±
C �i Q"i

T Q"i

i
; V2 D

1

2

3X
iD2

ıi .t/y
T
i y i

The derivatives of V1 along system (10) is

PV1 D

3X
iD1

h
´i

T Q„i � ˇi tr
°
QW

T
i
POW i

±
� �i Q"i

T PO"i

i
C ´1

T .�k1´1 C J 0´2 C J 0y2/

C ´2
T
�
�J 0

T´1 � k2´2 CB
�1
0 ´3 C %1J 0

TJ 0y2 CB0
�1y3 � %1J 0

T Os
�

C ´3
T
�
�
�
B0
�1
�T
´2 � k3´3

�

D

3X
iD1

h
Q"i

T
�
´i � �i PO"i

�
C tr

°
QW

T
i‚i´i

T � ˇi QW
T
i
POW i

±i
C„

with „ D ´1
T .�k1´1 C J 0y2/ C ´2

T
�
�k2´2 C %1J 0

TJ 0y2 CB0
�1y3 � %1J 0

T Os
�
�

k3´3
T´3.
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If the parameter updating law is chosen according to (13), PV1 is

PV1 D

3X
iD2

k´ik
2
h
˛i tr

°
QW

T
i
OW i

±
C �i Q"i

T O"i

i
C
h
´1

T Q„1 � ˇ1tr
°
QW

T
1
POW 1

±
� �1 Q"1

T PO"1

i
C„

(19)

Because J 0´2 D J 0
�
Pq � y2 �

NPq
�
D Os � J 0y2, one has

PV1D

3X
iD2

k´ik
2
h
˛i tr

°
QW

T
i
OW i

±
C�i Q"i

T O"i

i
C
h
´1

T Q„1�ˇ1tr
°
QW

T
1
POW 1

±
��1 Q"1

T PO"1

i
�k3´3

T´3

C ´1
T .�k1´1 C J 0y2/C ´2

T
�
�k2´2 CB0

�1y3
�
� %1.Os � J 0y2/

T
.Os � J 0y2/

Because s � Os D Q„1, it can be obtained that

PV1 D

3X
iD2

k´ik
2
h
˛i tr

°
QW

T
i
OW i

±
C �i Q"i

T O"i

i
C
h
´1

T Q„1 � ˇ1tr
°
QW

T
1
POW 1

±
� �1 Q"1

T PO"1

i

C ´1
T .�k1´1 C J 0y2/C ´2

T
�
�k2´2 CB0

�1y3
�
� k3´3

T´3

� %1.s � J 0y2/
T.s � J 0y2/ � %1 Q„

T
1
Q„1 C 2%1.s � J 0y2/

T Q„1

D

3X
iD2

k´ik
2
h
˛i tr

°
QW

T
i
OW i

±
C �i Q"i

T O"i

i
�
h
ˇ1tr

°
QW

T
1
POW 1

±
C �1 Q"1

T PO"1

i

C ´1
T .�k1´1 C J 0y2/ C ´2

T
�
�k2´2 CB0

�1y3
�
� k3´3

T´3

� %1.s � J 0y2/
T.s � J 0y2/ � %1 Q„

T
1
Q„1 C .´1 C 2%1s � 2%1J 0y2/

T Q„1

6
3X
iD2

k´ik
2
h
˛i tr

°
QW

T
i
OW i

±
C �i Q"i

T O"i

i
�
h
ˇ1tr

°
QW

T
1
POW 1

±
C �1 Q"1

T PO"1

i

C ´1
T .�k1´1 C J 0y2/ C ´2

T
�
�k2´2 CB0

�1y3
�
� k3´3

T´3

� %1 Q„
T
1
Q„1 C .´1 C 2%1s � 2%1J 0y2/

T Q„1

If the parameter estimation law is chosen as (12), the derivative of V1 is

PV1 6 � %1 Q„T
1
Q„1 C

3X
iD1

k´ik
2
h
˛i tr

°
QW

T
i
OW i

±
C �i Q"i

T O"i

i
�

�
k1 �

�J0
2

�
´1

T´1

�

�
k2 �

�B0�1

2

�
´2

T´2 � k3´3
T´3 C

�J0
2
y2

Ty2 C
�B0�1

2
y3

Ty3

In view of properties of the Frobenius norm [37], one has

tr
°
QW

T
i
OW i

±
D tr

°
QW

T
iW i

±
�
�� QW i

��
F

2 6
�� QW i

��
F
�Wi �

�� QW i

��
F

(20)

Because Q"i
T O"i D Q"i

T."i � Q"i / 6 k Q"ik�"i � k Q"ik
2, one obtains

PV16
3X
iD1

˛ik´ik
2

"
�Wi

2

4
�

��� QW ��
F
�
�Wi
2

�2#
C

3X
iD1

�i jj´i jj
2

"
�"i

2

4
�

�
jj Q"i jj �

�"i
2

�2#

� %1 Q„
T
1
Q„1 �

�
k1 �

�J0
2

�
´1

T´1 �

�
k2 �

�B0�1

2

�
´2

T´2 � k3´3
T´3
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C
�J0
2
y2

Ty2 C
�B0�1

2
y3

Ty3

6 � %1 Q„T
1
Q„1 �

 
k1 �

�J0
2
� ˛1

�W1
2

4
� �1

�"1
2

4

!
´1

T´1

�

 
k2 �

�B0�1

2
� ˛2

�W2
2

4
� �2

�"2
2

4

!
´2

T´2 C
�J0
2
y2

Ty2

�

 
k3 � ˛3

�W3
2

4
� �3

�"3
2

4

!
´3

T´3 C
�B0�1

2
y3

Ty3

Also, the derivative of V2 can be calculated as

PV2 D �
l2.t/ı2.t/

2
y2

Ty2 �
l3.t/ı3.t/

2
y3

Ty3

C ı2.t/y2
T

	
�
y2

�2.t/
CP2



C ı2.t/y3

T

	
�
y3

�3.t/
CP3




Because for any p > 0, the set S is compact. Therefore, kP ik has a maximum �Pi on S.
Thus, it can be concluded that

PV2 6 �
�
l2.t/ı2.t/

2
C
ı2.t/

�2.t/

�
y2

Ty2 C�P2ı2.t/ ky2k

�

�
l3.t/ı3.t/

2
C
ı3.t/

�3.t/

�
y3

Ty3 C�P3ı3.t/ ky3k

6 �
�
l2.t/ı2.t/

2
C
ı2.t/

�2.t/
�
ı2.t/

2

�
y2

Ty2

�

�
l3.t/ı3.t/

2
C
ı3.t/

�3.t/
�
ı3.t/

2

�
y3

Ty3 C
ı2.t/�

2
P2
C ı3.t/�

2
P3

2

Define the candidate Lyapunov function V D V1CV2 for the entire closed-loop system, one
obtains

PV 6 � %1 Q„T
1
Q„1 �

 
k1 �

�J0
2
� ˛1

�W1
2

4
� �1

�"1
2

4

!
´1

T´1 C
ı2(t)�P2 C ı

2
3(t)�2P3

2

�

 
k2 �

�B0�1

2
� ˛2

�W2
2

4
� �2

�"2
2

4

!
´2

T´2 �

 
k3 � ˛3

�W3
2

4
� �3

�"3
2

4

!
´3

T´3

�

�
l2.t/ı2.t/

2
C
ı2.t/

�2.t/
�
ı2.t/

2
�
�J0
2

�
y2

Ty2�

�
l3.t/ı3.t/

2
C
ı3.t/

�3.t/
�
ı3.t/

2
�
�B0�1

2

�
y3

Ty3

If the parameter of the first-order low-pass filter is chosen as (15), then

PV 6 � %1 Q„T
1
Q„1 �

 
k1 �

�J0
2
� ˛1

�W1
2

4
� �1

�"1
2

4

!
´1

T´1 C
ı2(t)�P2

2 C ı3(t)�P3
2

2

�

 
k2 �

�B0�1

2
� ˛2

�W2
2

4
� �2

�"2
2

4

!
´2

T´2 �

 
k3 � ˛3

�W3
2

4
� �3

�"3
2

4

!
´3

T´3

�

�
1

%2
�
ı2.0/

2
�
�J0
2

�
y2

Ty2 �

�
1

%3
�
ı3.0/

2
�
�B0�1

2

�
y3

Ty3

(21)
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If controller parameter are chosen to satisfy (14), (16) and further define

	1 D k1 �
�J0
2
� ˛1

�W1
2

4
� �1

�"1
2

4
; 	2 D k2 �

�B0�1

2
� ˛2

�W2
2

4
� �2

�"2
2

4

	3 D k3 � ˛3
�W3

2

4
� �3

�"3
2

4
; 	4 D

1

%2
�
ı2.0/

2
�
�J0
2
; 	5 D

1

%3
�
ı3.0/

2
�
�B0�1

2

	6 D %1; 	m D min ¹	1; 	2; 	3; 	4; 	5; 	6º

then (21) can be summarized as

PV 6 �	mkXk2 C
ı2.t/�P2

2 C ı3.t/�P3
2

2
(22)

where X D
�
Q„T
1; ´

T
1; ´2

T; ´3
T;y2

T;y3
T
�T

. Integrating both sides over Œ0;1
 yields

rl

1Z
0

kXk2dt 6 �P2
2

2	m

1Z
0

ı2.t/dt C
�P3

2

2	m

1Z
0

ı3.t/dt �
.V .1/ � V.0//

	m

6 �2�P2
2 C �3�P3

2 C 2V.0/

2	m
<1

(23)

which means X 2 L2; thus, X will eventually converges to zero, which equally implies the
asymptotic convergence of the tracking error.

(ii) : Integrating both sides of (22) over Œ0; t 
 gives

V.t/ � V.0/ 6 �	m
tZ
0

kXk2d� C
�2�P2

2 C �3�P3
2

2
<1

Thus, V.t/ is bounded, which implies that ´i ; OW i ; O"i ;yj 2 L1 .i D 1; 2; 3I j D 2; 3/:

From (9), one can further conclude that the control signal is also bounded.
(iii) : From (21), it gives

1Z
0

´1.�/
T´1.�/d� 6

1

	1
.V .0/ � V.1//C

�2�P2
2 C �3�P3

2

2
(24)

Because V is positive, one has

1Z
0

´1.�/
T´1.�/d� 6

1

	1
V.0/C

�2�P2
2 C �3�P3

2

2

In view of the definition of ´1 and the definition of L2-norm, (17) can be obtained. By simple
calculation, it can be found that Px � Pxd D J Pq � Pxd D J 0´2C J 0y2 � k1´1C Q„1, which
means that

1Z
0

. Px� Pxd /
T. Px� Pxd /dtD

1Z
0

.J 0´2CJ 0y2�k1´1C Q„1/
T
.J 0´2 C J 0y2 � k1´1 C Q„1/dt

6 4
1Z
0

�
.J 0´2/

T.J 0´2/C.J 0y2/
T.J 0y2/Ck1

2´1
T´1C. Q„1/

T
. Q„1/

�
dt

(25)
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Similar to (24), the following results can be obtained from (21)

1Z
0

´2
T´2dt 6 1

	2
V.0/C

�2�P2
2 C �3�P3

2

2

1Z
0

y2
Ty2dt 6 1

	4
V.0/C

�2�P2
2 C �3�P3

2

2

1Z
0

Q„1
T Q„1dt 6 1

%1
V.0/C

�2�P2
2 C �3�P3

2

2

(26)

Because J 0 is assumed to be upper-bounded by�J0 , combining this fact with (25) and (26),
(18) can be obtained.

�

Remark 2
The implementation of the proposed controller requires full state information of x, Px, q, Pq, Rq, �,
and P�. In real applications, x; Px can be obtained by a global camera or an inertial measurement unit
mounted to the end-effector. q, Pq, Rq, � and P� can be obtained by angle and torque sensors placed at
the robot manipulator joints.

Remark 3
The closed-loop system (11) is in the form of the so-called standard singular perturbation model.

�2.t/ Py2 D �y2 C �2.t/P2

�3.t/ Py3 D �y3 C �3.t/P3
(27)

the state yi of the fast varying system (27), whose velocity Pyi can be large when �i is small, may
rapidly converge to a root of 0 D �yi��i .t/Pi , which tends to zero. In this situation, the closed-loop
system dynamics of (10) is determined by the following quasi-steady-state model

8̂<
:̂
Ṕ1 D �k1´1 C J 0´2 C Q„1

Ṕ2 D �J 0
T´1 � k2´2 CB

�1
0 ´3 � %1J 0

T OsC Q„2

Ṕ3 D �.B0
�1/

T
´2 � k3´3 C Q„3

(28)

As can be seen, system (28) can be rendered stable by appropriately choosing the parameters
k1; k2; k3. This singular perturbation model also implies that reducing �i diminishes the effect of
y2; y3 in (28), which tells us that the introduction of the low-pass filters does not significantly affect
the stability property of the system (10).

Remark 4
Compared with conventional adaptive dynamic surface control methods cited in the introduction
part, the design of the time-varying first-order low-pass filter renders the tracking error asymptoti-
cally converges to zero as time evolves to infinity. When referred to conventional dynamic surface
control, the designed function �i .t/ could be regarded as a specific real constant number. How-
ever, as to the proposed controller in this paper, �i .t/ changes to a time-varying function decreasing
quickly towards zero, which essentially means the expanding of the bandwidth of the first-order
low-pass filter. Specially, when time evolves to infinity, the low-pass filter will change to a full-pass
filter, which is actually a direct-pass block. Then, the designed dynamic surface control degrades to
the backstepping control with the replacement of the symbolic derivative calculation to a numerical
one. It can be observed from (11) that a small �i would result in a large Pyi and subsequently a large
yi . The computation of large numbers would require a large memory space and pose computational

burdens on the controller. However, from (22), it is known that when kXk2 > ı2.t/�P2
2Cı3.t/�P3

2

2�m
,
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PV < 0. Thus, V will decrease until kXk2 6 ı2.t/�P2
2Cı3.t/�P3

2

2�m
. From this perspective, a small

ıi is preferred. Thus, one can always make a compromise between the computational burden and
the control performance by deciding when to stop changing the gains of the designed first-order
low-pass filters.

4. PASSIVITY INTERPRETATION

The robustifying adaptation laws designed in (12) and (13) for the neural network-based controller
are somewhat like the e1 modification [38] but not exactly. In e1 modification, the second terms of
the right side of (12), (13) do not contain k´ik

2. In this section, the physical meaning of the term
k´ik

2 is interpreted through the passivity theory. It is shown that the existence of k´ik
2 renders

the adaptive dynamic subsystem input feedforward passive (IFP). Further, combining the output
feedback passive (OFP) property of the transformed plant, the global system is output strict passive.
With this modification, the system energy is successfully reshaped to its desired equilibrium. In the
following, basic concepts of passivity and dissipativity are introduced first.

Definition 1
Dissipativity [39]: Assume that associated with the system H is a function ! W Rm � Rm !
R, called the supply rate, which is locally integrable for every u 2 U . That is, it satisfiesR t1
t0
j!.u.t/;y.t//jdt <1 for all t0 6 t1. LetX be a connected subset of Rn containing the origin.

We say that the system H is dissipative in X with the supply rate !.u;y/ if there exists a function
S.x/, S.0/ D 0, such that for all x 2 X

S.x/ > 0 and S.x.T // � S.x.0// 6
Z T

0

!.u.t/;y.t//dt

for all u 2 U and all T > 0 such that x.t/ 2 X for all t 2 Œ0; T 
. The function S.x/ is then called
a storage function.

Definition 2
Passivity: SystemH is said to be passive if it is dissipative with a supply rate !.u;y/ D uTy .

Definition 3
Excess/shortage of passivity: SystemH is said to be

� Output feedback passive: if it is dissipative with respect to !.u;y/ D uTy � �yTy for some
� 2 R. In the following, this property is quantified with the notation OFP(�).
� Output strict passive: if it is OFP with � > 0.
� Input feedforward passive: if it is dissipative with respect to !.u;y/ D uTy � uTu for some
 2 R. In the following, this property is quantified with the notation IFP( ).
� Input strict passive: if it is IFP with  > 0.

For simplicity, only the dynamics ´1 in (10) and the adaptation law for matrix gain OW 1 are analyzed.
It is assumed that Q"1; ´2;y2 all equal to zero. Then the closed-loop system can be rewritten into the
following connected system as shown in Figure 1.

Figure 1. Interconnections of designed dynamic subsystems.
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For
P
1 subsystem denoted in Figure 1, define the input as QW

T
1‚1 and the output as ´1, then

the energies injected into this subsystem can be regarded as
R t
0

�
QW

T
1‚1

�T
´1dt , and by simple

calculation, one can find that

tZ
0

�
QW

T
‚1

�T
´1dt D

tZ
0

. Ṕ1 C k1´1/
T´1dt D

tZ
0

´1
T Ṕ1dt C

tZ
0

k1´1
T´1dt

which actually means that

tZ
0

�
QW

T
1‚1 � k1´1

�T
´1dt D

1

2
´1

T´1
ˇ̌t
0

(29)

If the storage function for
P
1 subsystem is selected as S1.t/ D 0:5´1.t/

T´1.t/, then (29) turns
to be

S1.t/ � S1.0/ 6
tZ
0

�
QW

T
1‚1 � k1´1

�T
´1dt

which implies
P
1 subsystem is OFP(k1) and has an excess of passivity.

For
P
2 subsystem, define the input as ´1 and define the output as � QW

T
1‚1, then by calculating

the energies injected into this subsystem, one can obtain

tZ
0

´1
T
�
� QW

T
1‚1

�
dt D �

tZ
0

°
tr QW

T
1

�
ˇ1
POW 1 C ˛1k´1k

2 OW 1

�±
dt

D ˇ1

tZ
0

tr
°
QW

T
1
PQW 1

±
dt � ˛1

tZ
0

k´1k
2tr
°
QW

T
1
OW 1

±
dt

Using the property of the Frobenius norm (20), one can further obtain

tZ
0

´1
T
�
� QW

T
1‚1

�
dt > ˇ1

tZ
0

tr
°
QW

T
1
PQW 1

±
dt C ˛1

tZ
0

k´1k
2

 ��� QW 1

��
F
�
�W1
2

�2
�
�W1

2

4

!
dt

> ˇ1
2

tr
°
QW

T
1
QW 1

±
jt0 � ˛1

�W1
2

4

tZ
0

´1
T´1dt

From the definition, one can see that subsystem
P
2 is IFP (�0:25˛1�2W1) with storage function

S2 D
1
2
ˇ1tr

°
QW

T
1
QW 1

±
. Because v D �0:25˛1�2W1 < 0,

P
2 has a shortage of passivity. Thus, for

the feedback connection of
P
1 and

P
2, if �C D k1�0:25˛1�2W1 > 0, the shortage of passivity

of
P
2 can be compensated by the excess of passivity of

P
1 subsystem. Then the resulting system

is OFP, from which one can conclude that limt!1´1 D 0, limt!1
QW 1D 0, which coincides with

Theorem 1 under the assumption that Q"1 D 0.
From the aforementioned analysis, the passive property of the entire closed-loop system is estab-

lished. Based on the analysis, one can see that the shortage of passivity of the dynamic parameter
estimation subsystem (

P
2) is compensated by the excess of passivity of the plant dynamics (

P
1).

Besides, from the passivity theory, one knows that the excess or shortage of passivity reflects the
energies extracted or injected into the system. Thus, by tuning the parameters k1, ˛1, the dissipative
rate of the closed-loop system can be changed to obtain the desired transient performance. Further-
more, the explicit relations between tracking performance and controller parameters can be obtained
to provide methods to systematically improve the transient performance of the closed-loop system.
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5. SIMULATION EVALUATION

To study and demonstrate the effectiveness and performance of the proposed control strategies,
numerical simulations have been carried out using a set of governing equations of motion described
by (1), (2), and (3) in conjunction with the proposed control law (9) with neural network parameter
updating laws (12), (13). The configuration of the model is illustrated in Figure 2.

In the simulations, all the physical parameters are expressed in the international system of units,
and therefore, their units are omitted for simplicity. The physical parameters in Table I [16] are
considered for the simulation model, with ai , bi denoting the length represented in Figure 2 andmi ,
Ii being the mass and moment of inertia of the i-th body.

The parameters of the DC motor in (3) are set as k� D diag .Œ2; 2
/, L D diag .Œ0:2; 0:2
/,
R D diag .Œ5; 5
/, ke D diag .Œ2; 2
/. In the proposed controller, assume that the measured physical
parameters are Oa1 D Oa2 D Ob1 D 0:45; Ob0 D Ob2 D 0:55; Om0 D 30; Om1 D Om2 D 3; OI0 D 5; OI1 D
OI2 D 0:5; Ok� D diag .Œ3; 3
/ ; OL D diag .Œ0:3; 0:3
/ ; OR D diag .Œ7; 7
/ ; Oke D diag .Œ3; 3
/. In
simulations, the desired end-effector trajectory of the planar manipulator is chosen to be a circle in
the inertia space, which is xd D Œ0:3 sin.t/; 1:6C 0:3 cos.t/
T. The time-varying gains of the two
first-order low-pass filters are chosen to be �i .t/ D 0:05e�0:1t .i D 2; 3/, which decrease to zero
exponentially. The controller parameters are chosen as

k1 D 1; k2 D 3; k3 D 2; ˛1 D 3; ˛2 D 3; ˛3 D 3
ˇ1 D 1; ˇ2 D 1; ˇ3 D 1; �1 D 3; �2 D 3; �3 D 3
�1 D 1; �2 D 1; �3 D 1; %1 D 10; %2 D 0:05; %3 D 0:05

(30)

The weight matrices W i .i D 1; 2; 3/ are 7 � 2 matrix with all elements initialized to be
zero. The neural network basis functions ‚i .r i /, where r i is the input, are selected to be ‚i D

Œ�i1; : : : ; �i7

T with �ij D exp.�

��r i � cij�� =$2/,$ D 4, Œci1; : : : ; ci7
T D Œ�3�1
length.ri /;�2�

1length.ri /;�1� 1length.ri /; 0� 1length.ri /; 1� 1length.ri /; 2� 1length.ri /; 3� 1length.ri /
T, for i D 1; 2; 3,

Figure 2. Configuration of the simulated free-floating space robotic system.

Table I. Physical parameters of the
space robotic system.

Link ai bi mi Ii

0 (base) 0.5 40 6.667
1 0.5 0.5 4 0.333
2 0.5 0.5 3 0.250
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j D 1; : : : ; 7. In addition, for all numerical examples presented, the initial position of the center
of mass of the spacecraft is set as rc0 D

�
0 0

�T
; the initial configurations are set as q0.0/ D 0,

q1.0/ D �2, and q2.0/ D 2; and the initial velocity is Pq0.0/ D 0, Pq1.0/ D 0, and Pq2.0/ D 0,
respectively. In this section, simulations are conducted separately to illustrate both the effectiveness
and performance of the proposed control algorithms.

5.1. Effectiveness verification

Three different conditions are considered to emphasize the effectiveness and robustness of the pro-
posed neural network- based adaptive dynamic surface controller. The first simulation is conducted
without the compensation of neural networks. As can be seen in Figure 3, the actual trajectory does
not converge to the desired one, which is mainly caused by the kinematic uncertainties. Because the
Jacobian matrix based on the estimated physical parameters is used in the controller, the end-effector
velocity computed by the controller from this nominal forward kinematics (the estimated Jacobian)
does not equal to the actual one. When the wrong velocity information is used in the controller,
the tracking error occurs. However, as shown in Figure 4, by utilizing the learning capability of the

Figure 3. Simulated tracking results without utilization of neural network compensator: (a) trajectory in
x-y plane and (b) tracking errors in x-axis and y-axis, respectively. [Colour figure can be viewed at

wileyonlinelibrary.com]

Figure 4. Simulated tracking results with neural network compensator: (a) trajectory in x-y plane and (b)
tracking errors in x-axis and y-axis, respectively. [Colour figure can be viewed at wileyonlinelibrary.com]
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Figure 5. Simulated tracking results with neural network compensator and considering voltage disturbances:
(a) trajectory in x-y plane and (b) tracking errors in x-axis and y-axis, respectively. [Colour figure can be

viewed at wileyonlinelibrary.com]

Figure 6. Profiles of actuator input voltage and torque. [Colour figure can be viewed at wileyonlineli-
brary.com]

neural network, the difference between nominal kinematics and the unknown actual kinematics
can be compensated and the results are rather compelling. This demonstrates the effectiveness
of the initial motivation of this paper for combining neural network into this application. Fur-
thermore, when additive bounded voltage disturbances are taken into consideration, which are
assumed to be the form of .1:5e�2t ; 0:3 cos.t// [22], significant degradation of the tracking per-
formance is not observed, and this can be shown by the comparison in Figure 5. Furthermore,
the signals of the closed-loop system, containing the armature voltage and torques generated by
the actuators (Figure 6), norms of the neural network weighting matrix estimation (Figure 7(a)),
norms of the neural network approximation error estimation (Figure 7(b)) are given respectively.
From all these figures, it can be concluded that all the signals are rendered to be bounded by the
proposed controller.
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Figure 7. Evolution of the norms of (a) OWi .i D 1; 2; 3/ and (b) O"i .i D 1; 2; 3/. [Colour figure can be
viewed at wileyonlinelibrary.com]

Figure 8. Tracking errors under different controller gains. [Colour figure can be viewed at wileyonlineli-
brary.com]

5.2. Control performance illustration

Theorem 2 states the relations between the transient tracking performance and the controller gains.
From (17), it can be observed that if a faster transient response of the tracking performance is
required, one just needs to increase the value of controller gain k1. Figure 8 shows three dif-
ferent simulations under the control gains of (a) k1 D 0:5; k2 D 3; (b) k1 D 1; k2 D 3;
and (c) k1 D 3; k2 D 3. From simulation results with these controller gains, one can clearly
observe that the greater the value of k1, the faster the convergence of the tracking error. Thus, one
just needs to appropriately tune the control parameters k1; k2; k3 to obtain the desired transient
tracking performance.

In conventional dynamic surface control methods, only the ultimately uniformly boundedness of
the tracking error can be guaranteed. In this paper, the constant gain of the first-order low-pass filter
in conventional control methods is replaced by a time-varying one, which can help to provide asymp-
totic stabilization of the tracking error. In the following, the asymptotic convergence of the tracking
error is achieved and illustrated by a comparison with the conventional methods. In the simulation
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using conventional methods, the constant filter gains are set to be 0.05, which are the same as the
initial values of the time-varying filter gains. First, let us define the following performance index
during time period Œt0; tf 


ppos.t0; tf / D

Z tf

t0

kx � xdk dt

pvelo.t0; tf / D

Z tf

t0

k Px � Pxdk dt

The previously defined tracking performance can describe both the position tracking errors and the
velocity tracking errors during a certain time period. If the tracking error is only bounded stable,
then after a transient period, the two performance indexes should not increase or decrease, but rather,
they should fluctuate around certain values. However, if the tracking error is asymptotic stable, then
they should keep decreasing until reaching to a value of zero.

Based on the earlier definition, both the position and velocity tracking performance indexes are
computed with improved dynamic surface control when the controller parameters are selected as
(30) and with conventional control in which the filter gain remains to be a constant. The simulation
result is demonstrated in Figures 9 and 10, respectively. From the two figures, it can be concluded

Figure 9. Graphic visualization of the position tracking performance comparison. [Colour figure can be
viewed at wileyonlinelibrary.com]

Figure 10. Graphic visualization of the velocity tracking performance comparison. [Colour figure can be
viewed at wileyonlinelibrary.com]
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that the conventional constant gain-based dynamic surface control can only guarantee bounded
stability of the tracking errors, while the proposed time-varying/adaptive dynamic surface control
achieves asymptotic stability with smaller tracking errors.

6. CONCLUSIONS

By utilizing and combining its learning capability and unique function approximation property
of the RBF-based neural network with dynamic surface control method, this paper developed an
adaptive/intelligent dynamic surface control strategy for achieving improved task-space trajectory
tracking control of robot manipulator systems in the presence of uncertainties due to the kine-
matics, dynamics, and actuator modeling. For faster convergence and better tracking performance,
the constant gain first-order low-pass filter is replaced with a time-varying gain in the first-order
low-pass filter such that the asymptotic stabilization of the tracking error has been achieved. In
addition, the passivity structure of the designed robustifying adaptation law for the RBF neural net-
work is analyzed. More importantly, the L2 transient tracking performance is analyzed, which offers
explicit guidelines in tuning the control parameters to meet the specific transient tracking perfor-
mance requirement. Simulation results on a free-floating space robot demonstrate that the proposed
controller outperforms the conventional dynamic surface control methods. It should be pointed out
that in this study, the controller was derived by assuming that full knowledge of states is avail-
able. However, the availability of velocity measurements is not always satisfied owing to either cost
limitations or implementation constraints. Therefore, as one of future works, task-space trajectory
tracking control design for free-floating space robots without both task-space and angular velocity
measurements will be investigated.
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