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Distributed Consensus Over Markovian Packet Loss Channels
Liang Xu , Yilin Mo , and Lihua Xie

Abstract—This paper studies the consensusability problem of
multiagent systems (MASs), where agents communicate with each
other through Markovian packet loss channels. We try to determine
conditions under which there exists a linear distributed consensus
controller such that the MAS can achieve mean square consensus.
We first provide a necessary and sufficient consensus condition for
MASs with single input and independent and identically distributed
channel losses, which complements existing results. Then, we pro-
ceed to study the case with identical Markovian packet losses. A
necessary and sufficient consensus condition is first derived based
on the stability of Markov jump linear systems. Then, a numerically
verifiable consensus criterion in terms of the feasibility of linear ma-
trix inequalities (LMIs) is proposed. Furthermore, analytic sufficient
conditions and necessary conditions for mean square consensus-
ability are provided for general MASs. The case with nonidentical
packet loss is studied subsequently. The necessary and sufficient
consensus condition and a sufficient consensus condition in terms
of LMIs are proposed. In the end, numerical simulations are con-
ducted to verify the derived results.

Index Terms—Consensusability, markov processes, multi-agent
system, packet loss.

I. INTRODUCTION

The rapid development of technology has enabled wide applica-
tions of multiagent systems (MASs). The consensus problem, which
requires all agents to agree on certain quantity of common interests,
builds the foundation of other cooperative tasks. One question arises
before control synthesis: whether there exist distributed controllers
such that the MAS can achieve consensus. This problem is referred to
as consensusability of MASs. Previously, the consensusability prob-
lem with perfect communication channels has been well studied under
an undirected/directed communication topology [1]–[5]. In [1], it is
shown that to ensure the consensus of a continuous-time linear MAS,
the linear agent dynamics should be stabilizable and detectable, and
the undirected communication topology should be connected. Further-
more, You and Xie, and Gu et al. [2], [3] show that for a discrete-time
linear MAS, the product of the unstable eigenvalues of the agent sys-
tem matrix should additionally be upper bounded by a function of the
eigen-ratio of the undirected graph. Extensions to directed graphs and
robust consensus can be found in [4] and [5].

Most of the consensusability results discussed above are derived
under perfect communications assumptions. However, this is not the
case in practical applications, where communication channels natu-
rally suffer from limited data rate constraints, signal-to-noise ratio con-
straints, time-delay, and so on. Therefore, the consensusability problem

Manuscript received November 19, 2018; revised November 23, 2018;
accepted April 11, 2019. Date of publication May 9, 2019; date of current
version December 27, 2019. Recommended by Associate Editor W. X.
Zheng. (Corresponding author: Yilin Mo.)

L. Xu and L. Xie are with the School of Electrical and Electronic Engi-
neering, Nanyang Technological University, Singapore 639798 (e-mail:,
lxu006@e.ntu.edu.sg; elhxie@ntu.edu.sg).

Y. Mo is with the Department of Automation and BNRist, Tsinghua
University, Beijing 100091, China (e-mail:,ylmo@tsinghua.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2019.2915747

of MASs under communication channel constraints has been widely
studied in [6]–[11] under different channel models. In this paper, we
are interested in the fading phenomenon in wireless communications,
which is caused by multipath propagation or shadowing from obstacles
affecting the wave propagation. The distributed consensus over inde-
pendent and identically distributed (i.i.d.) fading channels has been
studied in [9]. However, the i.i.d. assumption fails to capture the tem-
poral correlation of channel fadings. The finite-state Markov channel
(FSMC) model is a simple model that captures the main features of
fading channel [12], where the channel fading is approximated as a
discrete-time Markov process. Specifically, the set of all possible fad-
ing gains is modeled as a set of finite channel states. The channel varies
over these states at each interval according to a set of Markov transition
probabilities. FSMCs have been used to approximate both mathemati-
cal and experimental fading models, including satellite channels, indoor
channels, Rayleigh fading channels, and Rician fading channels [12].
In this paper, we consider the Markovian packet loss channel, which is
a special type of FSMCs with only two states representing the reception
of the packet. This channel model has been used in various networked
control literature (see [13]–[15]). Due to the existence of correlations of
packet losses over time, the methods used to deal with the i.i.d. channel
state in [9] cannot be applied directly to the Markovian channel loss
case.

Previously, the consensusability problem of second-order integra-
tor multiagent systems over Markovian switching topology has been
studied in [16], where consensusability conditions are obtained via
eigenvalue perturbation analysis. However, it is not clear if the eigen-
value analysis method can be extended to general multiagent dynam-
ics. In this paper, we study the consensusability problem of MASs
over Markovian packet loss channels and try to provide consensus-
ability condition for general multiagent systems by directly analyzing
the solvability of certain matrix inequalities. The contributions are
listed as follows. A necessary and sufficient consensus condition for
MASs with single input and identical i.i.d. channel losses is first de-
rived, which complements existing results and explicitly demonstrates
how the network topology, the agent dynamics, and the packet loss
interplay with each other in the consensus problem. For the consen-
sus with identical Markovian packet loss, first, a necessary and suf-
ficient consensusability condition is provided; second, a numerically
testable criterion and analytical sufficient and necessary consensusabil-
ity conditions are derived; finally, a critical consensusability condition
is obtained for the special case of scalar agent dynamics. For the con-
sensus with nonidentical Markovian packet loss, sufficient and nec-
essary consensus conditions are also derived by introducing the edge
Laplacian.

Some preliminaries results on distributed consensus over identical
Markovian packet loss channels are contained in [17]. This paper con-
tains new results for the case of MASs with single input and identical
i.i.d. packet losses, and for distributed consensus with nonidentical
Markovian packet loss. This paper is organized as follows. The prob-
lem formulation is stated in Section II. The consensusability results for
MASs with single input and identical i.i.d. channel losses are presented
in Section III. The consensusability results for the cases with identical
Markovian and nonidentical Markovian packet losses are discussed in
Section IV and Section V, respectively. Numerical simulations are pro-
vided in Section VI. This paper ends with some concluding remarks in
Section VII.
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Notation: All matrices and vectors are assumed to be of appropriate
dimensions that are clear from the context. R, Rn , Rm ×n represent the
sets of real scalars, n-dimensional real column vectors, and m × n-
dimensional real matrices, respectively. 1 denotes a column vector of
ones. I represents the identity matrix. A′, A−1 , ρ(A), and det(A)
are the transpose, the inverse, the spectral radius, and the determinant
of matrix A, respectively. ⊗ represents the Kronecker product. For a
symmetric matrix A, A ≥ 0 (A > 0) means that matrix A is positive
semidefinite (definite). For a symmetric matrix A, λm in (A) denotes the
smallest eigenvalue of A. diag(A, B) denotes a diagonal matrix with
diagonal entries A and B. E{·} denotes the expectation operator. The
symmetric matrix

[
A
C

C ′
B

]
is abbreviated as [ A

C
∗
B

].

II. PROBLEM FORMULATION

Let V = {1, 2, . . . , N} be the set of N agents with i ∈ V repre-
senting the ith agent. A graph G = (V, E) is used to describe the
interaction among agents, where E ⊆ V × V denotes the edge set with
paired agents. We assume G is undirected throughout this paper. An
edge (j, i) ∈ E means that the ith agent and the jth agent can commu-
nicate with each other. The neighborhood set Ni of agent i is defined
as Ni = {j |(j, i) ∈ E}. The graph Laplacian matrix L = [Lij ]N ×N

is defined as Lii =
∑

j∈Ni
aij , Lij = −aij for i �= j, where aii = 0,

aij = 1 if (j, i) ∈ E and aij = 0, otherwise. A path on G from agent i1
to agent il is a sequence of ordered edges in the form of (ik , ik+1 ) ∈ E ,
k = 1, 2, . . . , l − 1. A graph is connected if there is a path between ev-
ery pair of distinct nodes.

In this paper, we assume that each agent has the homogeneous
dynamics

xi (t + 1) = Axi (t) + Bui (t), i = 1, . . . , N (1)

where xi ∈ Rn is the system state; ui ∈ Rm is the control input; (A, B)
is controllable and B has full-column rank. The interaction among
agents is characterized by an undirected connected graph G = {V, E}.
The consensus protocol is given by

ui (t) =
∑

j∈Ni

γij (t)K(xi (t) − xj (t)) (2)

where γij (t) ∈ {0, 1} models the lossy effect of the communication
channel from agent j to agent i, which satisfies that γij (t) = 1 when
the transmission is successful at time t, and 0 otherwise.

Throughout the paper, we say that the MAS (1) is mean square
consensusable by the protocol (2) if there exists K such that the
MAS (1) can achieve mean square consensus under the protocol (2),
i.e., limt→∞ E {‖xi (t) − xj (t)‖2} = 0 for all i, j ∈ V . The following
assumption is made as in [2].

Assumption 1: All the eigenvalues of A are either on or outside the
unit disk.

III. SINGLE INPUT AGENT DYNAMICS WITH I.I.D. PACKET LOSS

In this section, we consider the special case that the agent is with
single input, i.e., ui ∈ R and the packet loss processes for all channels
are identical and i.i.d., which has been studied in [9]. We provide a nec-
essary and sufficient condition to guarantee the mean square consensus,
which complements existing results in [9], where only the sufficiency
is proved. Specifically, we make the following assumption about the
packet loss process.

Assumption 2: γij (t) = γ(t) for all (i, j) ∈ E and t ≥ 0. More-
over, the sequence {γ(t)}t≥0 is i.i.d. and γ(t) has a Bernoulli distribu-
tion with lossy probability p.

Remark 3: Note that in general the packet losses in a multiagent
system may not be identical since different channels are involved in
communications among agents. However, there are some situations
where the packet losses among channels can be considered identical.
For example, the packet losses are caused by a malicious jammer
which randomly jams the communication channels or GPS position

signals. On the other hand, the assumption allows us to characterize
how the communication channel, the network topology, and the agent
dynamics interplay with each other in the consensus problem, which is
challenging for general nonidentical packet losses cases.

Define the consensus error as δ(t) = (I − 1
N

11′)x(t), where
x(t) = [x1 (t)′, . . . , xN (t)′]′. Following similar derivations as in [9],
the consensus error dynamics is given by:

δ(t + 1) = (I ⊗ A + γ(t)L ⊗ BK)δ(t) (3)

where L is the graph Laplacian of G. If there exists K such that
system (3) is mean square stable, i.e., limt→∞ E {δ(t)δ(t)′} = 0, the
MAS can achieve mean square consensus. It has been proved in [9]
that the mean square stability of (3) is equivalent to the simultaneous
mean square stability of

δi (t + 1) = (A + λi γ(t)BK)δi (t), i = 2, . . . , N (4)

where λi is the nonzero positive eigenvalue of L with λ2 ≤ · · · ≤ λN .
The following lemmas are needed in the proof of the main result and
stated first.

Lemma 4: Let P > 0. Suppose there exists a vector v, such that
v′Pv > φ2 and φ > 0, then there exists a vector x, such that the fol-
lowing inequalities hold:

x′P −1x < 1, x′v > φ.

Proof: Let us choose x = αPv, then

x′P −1x = α2v′Pv, x′v = αv′Pv.

Since v′Pv > φ2 , we can choose α, such that

φ

v′Pv
< α <

1√
v′Pv

.

�
Lemma 5: Suppose that det(A) �= 0, then any P > 0 that satisfies

P − A′PA + A′PB(B ′PB)−1B ′PA > 0 (5)

must also satisfy

B ′(A′)−1PA−1B

B ′PB
≤ 1

det(A)2 . (6)

Proof: We prove this lemma by contradiction. Let

g(P ) = P − A′PA + A′PB(B ′PB)−1B ′PA > 0.

Suppose that there exists a P > 0 to (5), such that

B ′(A′)−1PA−1B

B ′PB
>

1
(det A)2

then we have

B ′(A′)−1 g(P )
B ′PB

A−1B =
B ′(A′)−1PA−1B

B ′PB
>

1
(det A)2 .

Therefore, by Lemma 4, there exists a K , such that

(K − K∗)
(

g(P )
B ′PB

)−1

(K − K∗)′ < 1 (7)

and

(K − K∗)A−1B >

∣∣
∣
∣

1
det A

∣∣
∣
∣ (8)

where K∗ = −B ′PA/(B ′PB).
By Schur complement lemma and the fact that B ′PB > 0, (7) is

equivalent to

P > A′PA − A′PB(B ′PB)−1B ′PA

+(K − K∗)′B ′PB(K − K∗)
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or P > (A + BK)′P (A + BK). Therefore, K is stabilizing, i.e.,
A + BK is strictly stable. By matrix determinant lemma, if A +
BK is stable, then |det(A + BK)| = |det A||1 + KA−1B| < 1.
Therefore,

KA−1B < −1 +
∣
∣∣
∣

1
det A

∣
∣∣
∣ . (9)

On the other hand, by the definition of K∗, we have

K∗A−1B = −B ′PAA−1B

B ′PB
= −1.

Then, we have from (8) that

KA−1B > −1 +
∣
∣
∣∣

1
det A

∣
∣
∣∣

which contradicts with (9). Therefore, any P > 0 that satisfies (5),
must also satisfy (6). �

The main result is stated as follows.
Theorem 6: Under Assumptions 1 and 2, when m = 1, the MAS (1)

is mean square consensusable by the protocol (2) if and only if

(1 − p)

[

1 −
(

λN − λ2

λN + λ2

)2
]

> 1 − 1
(det A)2 . (10)

Proof: The sufficiency follows from [9, Th. 1]. Only the necessity is
proved here, which follows from the simultaneous mean square stability
of (4). Let μ and σ2 be the mean and variance of γ(t), respectively,
then we have μ = 1 − p and σ2 = p(1 − p).

In view of [18, Lemma 1], (4) is mean square stable for i.i.d.
{γ(t)}t≥0 if and only if there exist Pi > 0, i = 2, . . . , N and K , such
that

Pi > (A + λiμBK)′Pi (A + λiμBK) + λ2
i σ

2K ′B ′PiBK

for all i = 2, . . . , N . With some manipulations, we can show that

Pi − A′PiA +
μ2

μ2 + σ2 A′PiB(B ′PiB)−1B ′PiA

> λ2
i (μ

2 + σ2 )
(

K +
μ

λi (μ2 + σ2 )
(B ′PiB)−1B ′PiA

)′

× B ′PiB

(
K +

μ

λi (μ2 + σ2 )
(B ′PiB)−1B ′PiA

)
.

Left and right multiply the above inequality with B ′(A′)−1 and A−1B,
we can obtain that

(

λi

√
μ2 + σ2KA−1B +

μ
√

μ2 + σ2

)2

<
B ′(A′)−1PiA

−1B

B ′PiB
+

μ2

μ2 + σ2 − 1. (11)

Since Pi satisfies (5), we have from Lemma 5 that

B ′(A′)−1PiA
−1B

B ′PiB
≤ 1

det(A)2 .

Therefore, we have from (11) that
(

λi

√
μ2 + σ2KA−1B +

μ
√

μ2 + σ2

)2

<
1

det(A)2 +
μ2

μ2 + σ2 − 1

which further indicates

β
i
<
∣
∣KA−1B

∣
∣ < βi (12)

with

β
i
=

−
√

1
a 2

0
+ μ 2

μ 2 +σ 2 − 1 + μ√
μ 2 +σ 2

λi

√
μ2 + σ2

βi =

√
1

a 2
0

+ μ 2

μ 2 +σ 2 − 1 + μ√
μ 2 +σ 2

λi

√
μ2 + σ2

where a0 = det(A).
Since there exists a common |KA−1B|, such that (12) holds for all

i = 2, . . . , N . ∩i

(
β

i
, βi

)
must be nonempty, which implies β

2
< βN .

Furthermore, calculation shows that

μ2

μ2 + σ2 ×
[

1 −
(

λN − λ2

λN + λ2

)2
]

> 1 − 1
a2

0
. (13)

Substituting the definitions of μ, σ2 , and a0 , we can obtain (10). �
Furthermore, in view of the above-mentioned derivations, we have

the following consensusability condition for the general fading case
studied in [9].

Corollary 7: Under Assumption 1, if γij (t) = γ(t) for all (i, j) ∈
E and {γ(t)}t≥0 is i.i.d. with mean μ and variance σ2 , when m = 1,
the MAS (1) is mean square consensusable by the protocol (2) if and
only if (13) holds.

IV. IDENTICAL MARKOVIAN PACKET LOSS

In this section, we consider a more general case that ui is a Rm vector
with m ≥ 1 and γ(t) is a Markov process and make the following
assumption.

Assumption 8: γij (t) = γ(t) for all (i, j) ∈ E and t ≥ 0. More-
over, {γ(t)}t≥0 is a time-homogeneous Markov process with two states
{0, 1} and the transition probability matrix Q is

Q =
[

1 − q q

p 1 − p

]
(14)

where 0 < p < 1 represents the failure rate and 0 < q < 1 denotes the
recovery rate.

Remark 9: Markov models are widely used to capture temporal
correlations of channel conditions [12], [19]. However, due to the cor-
relations of packet losses over time, the methods used to deal with the
i.i.d. channel fading in [9] cannot be applied to the Markovian packet
loss case.

Since {γ(t)}t≥0 is a Markov process, the consensusability is equiv-
alent to the simultaneous mean square stabilizability of the N − 1
Markov jump linear systems (4). In view of [20, Th. 3.9] describing the
stability of Markov jump linear systems, we can obtain the following
consensusability condition.

Theorem 10: Under Assumptions 1 and 8, the MAS (1) is mean
square consensusable by the protocol (2) if and only if either of the
following conditions holds.
1) There exist K , Pi,1 > 0, Pi,2 > 0 with i = 2, . . . , N , such that

Pi,1 − (1 − q)A′Pi,1A

− q(A + λiBK)′Pi,2 (A + λiBK) > 0

Pi,2 − pA′Pi,1A

− (1 − p)(A + λiBK)′Pi,2 (A + λiBK) > 0.

2) There exists K such that

ρ (Hi ) < 1

for all i = 2, . . . , N with
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Hi =
[

(1 − q)A ⊗ A p(A + λiBK) ⊗ (A + λiBK)
qA ⊗ A (1 − p)(A + λiBK) ⊗ (A + λiBK)

]
.

With similar transformations as in the proof of Theorem 11, the
consensus criterion 1) in Theorem 10 can be shown to be equivalent to
a feasibility problem with bilinear matrix inequality (BMI) constraints.
It is well known that checking the solvability of a BMI is generally NP-
hard [21]. Therefore, in the sequel, we propose a sufficient consensus
condition in terms of the feasibility of linear matrix inequalities (LMIs)
by a fixed Pi,1 and Pi,2 .

Theorem 11: Under Assumptions 1 and 8, if there exist Q1 > 0,
Q2 > 0, Z1 , Z2 such that the following LMIs hold:

⎡

⎢⎢
⎢
⎢
⎣

Q1 ∗ ∗ ∗
√

qc(AQ1 + BZ1 ) Q2 ∗ ∗
√

q(1 − c)AQ1 0 Q2 ∗
√

1 − qAQ1 0 0 Q1

⎤

⎥⎥
⎥
⎥
⎦

> 0 (15)

⎡

⎢⎢
⎢
⎢
⎣

Q2 ∗ ∗ ∗
√

(1 − p)c(AQ2 + BZ2 ) Q2 ∗ ∗
√

(1 − p)(1 − c)AQ2 0 Q2 ∗
√

pAQ2 0 0 Q1

⎤

⎥⎥
⎥
⎥
⎦

> 0 (16)

where c = 1 −
(

λN −λ2
λN +λ2

)2
> 0, then the MAS (1) is mean square con-

sensusable by the protocol (2) and an admissible control gain is given
by

K = − 2
λ2 + λN

(B ′Q−1
2 B)−1B ′Q−1

2 A.

Proof: If there exist Q1 > 0, Q2 > 0, Z1 , Z2 such that (15)
and (16) hold, then there exist P1 = Q−1

1 > 0, P2 = Q−1
2 > 0, K1 =

Z1P1 , and K2 = Z2P2 such that

⎡

⎢⎢
⎢
⎢
⎣

P −1
1 ∗ ∗ ∗

√
qc(A + BK1 )P −1

1 P −1
2 ∗ ∗

√
q(1 − c)AP −1

1 0 P −1
2 ∗

√
1 − qAP −1

1 0 0 P −1
1

⎤

⎥⎥
⎥
⎥
⎦

> 0 (17)

⎡

⎢
⎢
⎢⎢
⎣

P −1
2 ∗ ∗ ∗

√
(1 − p)c(A + BK2 )P −1

2 P −1
2 ∗ ∗

√
(1 − p)(1 − c)AP −1

2 0 P −1
2 ∗

√
pAP −1

2 0 0 P −1
1

⎤

⎥
⎥
⎥⎥
⎦

> 0. (18)

Left and right multiply (17) with diag(P1 , I, I, I), and left and right
multiply (18) with diag(P2 , I, I, I), we obtain

⎡

⎢⎢
⎢
⎢
⎣

P1 ∗ ∗ ∗
√

qc(A + BK1 ) P −1
2 ∗ ∗

√
q(1 − c)A 0 P −1

2 ∗
√

1 − qA 0 0 P −1
1

⎤

⎥⎥
⎥
⎥
⎦

> 0

⎡

⎢
⎢
⎢
⎢
⎣

P2 ∗ ∗ ∗
√

(1 − p)c(A + BK2 ) P −1
2 ∗ ∗

√
(1 − p)(1 − c)A 0 P −1

2 ∗
√

pA 0 0 P −1
1

⎤

⎥
⎥
⎥
⎥
⎦

> 0.

In view of Schur complement lemma, we know that

P1 − (1 − q)A′P1A − q(1 − c)A′P2A

− qc(A + BK1 )′P2 (A + BK1 ) > 0 (19)

P2 − pA′P1A − (1 − p)(1 − c)A′P2A

− (1 − p)c(A + BK2 )′P2 (A + BK2 ) > 0. (20)

For any P2 > 0 and K , we have

(A + BK)′P2 (A + BK)

= A′P2A − A′P2B(B ′P2B)−1B ′P2A

+ (K + (B ′P2B)−1B ′P2A)′(B ′P2B)

× (K + (B ′P2B)−1B ′P2A)

which implies

A′P2B(B ′P2B)−1B ′P2A

≥ A′P2A − (A + BK)′P2 (A + BK).

Therefore,

− cA′P2A + c(A + BK)′P2 (A + BK)

≥ −cA′P2B(B ′P2B)−1B ′P2A

for any K and P2 > 0.
In view of the above result and (19), (20), we have

P1 − (1 − q)A′P1A

q
> A′P2A

− cA′P2B(B ′P2B)−1B ′P2A (21)

P2 − pA′P1A

1 − p
> A′P2A

− cA′P2B(B ′P2B)−1B ′P2A. (22)

Since −c = mink maxi (λ2
i k

2 + 2λi k) and the optimal k to the min-
max problem is ǩ = − 2

λ2 +λN
, we know that

P1 − (1 − q)A′P1A

q
> A′P2A

+ (λ2
i ǩ

2 + 2λi ǩ)A′P2B(B ′P2B)−1B ′P2A

P2 − pA′P1A

1 − p
> A′P2A

+ (λ2
i ǩ

2 + 2λi ǩ)A′P2B(B ′P2B)−1B ′P2A

hold for all i = 2, . . . , N . Therefore, 1) in Theorem 10 is satisfied with

Pi,1 = P1 , Pi,2 = P2 , K = ǩ(B ′P2B)−1B ′P2A.

�

A. Analytic Consensus Conditions

The criterion stated in Theorem 11 is easy to verify. However, it fails
to provide insights into the consensusability problem. In the following,
we provide analytical consensusability conditions, which show directly
how the channel properties, the network topology, and the agent dy-
namics interplay with each other to allow the existence of a distributed
consensus controller. The following lemma is needed in proving the
main result and is stated first.

Lemma 12 ([22]): Under Assumption 1, if (A, B) is controllable,
then

P > A′PA − γA′PB(B ′PB)−1B ′PA (23)
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admits a solution P > 0, if and only if γ is greater than a critical value
γc > 0.

Remark 13: The value γc is of great importance in determining the
critical lossy probability in Kalman filtering over intermittent chan-
nels [22]–[24]. It has been shown that the critical value γc is only
determined by the pair (A, B) [24]. However, an explicit expression
of γc is only available for some specific situations. For example, when
rank(B) = 1, γc = 1 − 1

Π i |λi (A ) |2 and when B is square and invert-

ible, γc = 1 − 1
m ax i |λi (A ) |2 . For other cases, the critical value γc can

be obtained by solving a quasiconvex LMI optimization problem [22].
Theorem 14: Under Assumptions 1 and 8, the MAS (1) is mean

square consensusable by the protocol (2) if

γ1 = min{q, 1 − p}
[

1 −
(

λN − λ2

λN + λ2

)2
]

> γc (24)

where γc is given in Lemma 12. Moreover, if (24) holds, an admissible
control gain is given by

K = − 2
λ2 + λN

(B ′PB)−1B ′PA

where P is the solution to (23) with γ = γ1 .
Proof: If (24) holds, in view of Lemma 12, there exists a P > 0

to (23) with γ = γ1 , such that

P > A′PA − qcA′PB(B ′PB)−1B ′PA

P > A′PA − (1 − p)cA′PB(B ′PB)−1B ′PA.

Since −c = maxi (λ2
i ǩ

2 + 2λi ǩ) with ǩ = − 2
λ2 +λN

, we have

P > A′PA + q(2λi ǩ + λ2
i ǩ

2 )A′PB(B ′PB)−1B ′PA

P > A′PA + (1 − p)(2λi ǩ + λ2
i ǩ

2 )A′PB(B ′PB)−1B ′PA

for all i = 2, . . . , N , which is the condition in 1) in Theorem 10 with

Pi,1 = Pi,2 = P, K = ǩ(B ′PB)−1B ′PA.

�
Remark 15: Theorem 11 is obtained by letting Pi,1 = P1 , Pi,2 =

P2 . Theorem 14 is obtained by letting Pi,1 = Pi,2 = P . Since the latter
is more restrictive than the former. We can expect that Theorem 14
is more restrictive than Theorem 11, which will be illustrated by a
simulation example in the next section.

In conjunction with the analytic sufficient consensusability condition
in Theorem 14, we also provide an explicit necessary consensusability
condition as stated below.

Theorem 16: Under Assumptions 1 and 8, the MAS (1) is mean
square consensusable by the protocol (2) only if there exists K such
that

(1 − q)
1
2 ρ(A) < 1 (25)

(1 − p)
1
2 ρ(A + λiBK) < 1 (26)

for all i = 2, . . . , N . Moreover, when the agent is with single input, i.e.,
m = 1, the MAS (1) is mean square consensusable by the protocol (2)
only if

(1 − q)
1
2 ρ(A) < 1 (27)

(1 − p)
n
2 det(A)

λN − λ2

λN + λ2
< 1. (28)

Proof: If the MAS can achieve mean square consensus, in view of
1) in Theorem 10, we have that there exist Pi,1 > 0, Pi,2 > 0, and K
such that

Pi,1 > (1 − q)A′Pi,1A

Pi,2 > (1 − p)(A + λiBK)′Pi,2 (A + λiBK)

for all i = 2, . . . , N . Furthermore, from Lyapunov stability theory, we
can obtain the necessary conditions (25) and (26).

When the agent is with single input, following similar line of argu-
ment as in the necessity proof of [2, Lemma 3.1], we can obtain the
necessary condition (28) from (26). �

B. Critical Consensus Condition for Scalar Agent Dynamics

When all the agents are with scalar dynamics, we can obtain a closed-
form consensusability condition. The following lemma is needed in the
proof of the main result and is stated first.

Lemma 17 ([25]): Let Q be defined in (14); D =
[ 1

0
0
δ

]
with 0 <

q, p, δ < 1; λ ∈ R, |λ| ≥ 1. The following conditions are equivalent:
1)

λ2ρ(Q′D) < 1

2)

1 − λ2 (1 − q) > 0 (29)

λ2δ

[
1 +

p(λ2 − 1)
1 − λ2 (1 − q)

]
< 1. (30)

Without loss of generality, for scalar agent dynamics, i.e., n = m =
1, we let A = a ∈ R, B = 1, K = k ∈ R. The main result is stated as
follows.

Theorem 18: Under Assumptions 1 and 8, the MAS (1) with scalar
agent dynamics is mean square consensusable by the protocol (2) if
and only if

(1 − q)a2 < 1 (31)

a2
(

λN − λ2

λN + λ2

)2 [
1 +

p(a2 − 1)
1 − a2 (1 − q)

]
< 1. (32)

Proof: In view of 2) in Theorem 10, for scalar agent dynamics, the
MAS (1) is mean square consensusable by the protocol (2) if and only
if there exists k such that

a2ρ

(
Q′ ×

[
1 0
0 (a+λi k )2

a 2

])
< 1

for all i = 2, . . . , N . Furthermore, from Lemma 17, a necessary and
sufficient consensus condition is that if there exists k such that for all
i = 2, . . . , N

(1 − q)a2 < 1 (33)

(a + λi k)2
[
1 +

p(a2 − 1)
1 − a2 (1 − q)

]
< 1. (34)

Since (34) holds for all i, we have that

min
k

max
i

(a + λi k)2
[
1 +

p(a2 − 1)
1 − a2 (1 − q)

]
< 1.

Moreover, since

min
k

max
i

(a + λi k)2 = a2
(

λN − λ2

λN + λ2

)2

we can obtain the necessary and sufficient consensusability condi-
tion (31), (32) from (33), (34). �

Interestingly, we can show that when the agent dynamics is scalar,
the sufficient condition indicated in Theorem 11 is also necessary.
Theorem 11 is equivalent to check the solvability of (21) and (22). For
scalar systems with A = a ∈ R, B = 1, (21) and (22) change to

[1 − (1 − q)a2 ]P1 > qa2 (1 − c)P2 (35)

[1 − (1 − p)(1 − c)a2 ]P2 > pa2P1 . (36)
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Fig. 1. Tolerable failure rate and recovery rate.

We can show that the necessary and sufficient condition to guarantee
the solvability of the above-mentioned inequality is given by (31) and
(32). Since P1 > 0 and qa2 (1 − c)P2 > 0, we have from (35) that
1 − (1 − q)a2 > 0, which gives (31). Let θ = 1 − c = ( λN −λ2

λN +λ2
)2 . We

can obtain a lower bound of P1 from (35) and substitute this bound
into (36) to obtain

[1 − (1 − p)θa2 ]P2 > pa2 qa2θP2

[1 − (1 − q)a2 ]
.

Since P2 > 0, we further have that

[1 − (1 − p)θa2 ][1 − (1 − q)a2 ] − pqa4θ > 0

which implies

a2θ[(1 − p) − a2 (1 − p − q)] < 1 − a2 (1 − q).

Dividing both sides by 1 − a2 (1 − q), we can obtain (32).
In contrast to the tightness of Theorem 11 for scalar systems, Theo-

rem 14 is generally not necessary. Consider the case that A = 2, B = 1,
λ2 = 2, and λN = 3, then the tolerable (p, q) from Theorem 18 are
given by

q >
3
4
, p < 7 ×

(
q − 3

4

)
.

While the sufficiency indicated by Theorem 14, is given by

q >
25
32

, p <
7
32

.

The tolerable failure rate and recovery rate are plotted in Fig. 1. It is
clear that the result in Theorem 14 is conservative in the case of scalar
agent dynamics.

The assumption of identical channel loss distributions is somewhat
restrictive and less practical. However, it is the simplest case in studying
the consensus problem over Markovian packet loss channels and is
expected to shed light on solutions to more general nonidentical cases,
which is studied in the subsequent section.

V. NONIDENTICAL MARKOVIAN PACKET LOSS

In the presence of nonidentical packet losses, the consensus error dy-
namics of δ is given by δ(t + 1) = (I ⊗ A + L(t) ⊗ BK) δ(t) with
L(t) modeling both the communication topology and the packet losses.
Since the packet loss is coupled with the communication topology in
L(t), the analysis of the mean square consensus is difficult. There-
fore, the edge Laplacian [26] is used to model the consensus error

dynamics as in [9], which allows to separate the lossy effect from the
network topology to facilitate the consensusability analysis by building
dynamics on edges rather than on vertexes.

The following graph definitions are needed in introducing the edge
Laplacian. A virtual orientation of the edge in an undirected graph is
an assignment of directions to the edge (i, j) such that one vertex is
chosen to be the initial node and the other to be the terminal node. The
incidence matrix E for an oriented graph G is a {0, 1,−1}-matrix with
rows and columns indexed by vertices and edges of G, respectively,
such that

[E]ik =

⎧
⎪⎪⎨

⎪⎪⎩

+1, if i is the initial node of edge k

−1, if i is the terminal node of edge k

0, otherwise

.

The graph Laplacian L and edge Laplacian Le can be constructed from
the incidence matrix, respectively, as L = EE ′, Le = E ′E [26].

Since fading is mostly caused by path loss and shadowing from
obstacles, for simplicity we assume that the fadings (packet losses)
on the same edge are equal, i.e., γij (t) = γj i (t) if j and i are con-
nected, which makes sense in some practical applications [27]. For
general channel fading models, where γij �= γj i , the directed edge
Laplacian [28], [29] can be used to formulate the consensus dynamics
and similar analysis methods proposed in this section can be applicable
to the study of the consensusability problem. Define the state on the ith
edge as zi = xj − xk , with j, k representing the initial node and the
terminal node of the ith edge, respectively. Following the definition of
incidence matrix, the controller (2) can be alternatively represented as:

uj (t) = K
l∑

k=1

ejk ζk (t)zk (t)

where l is the total number of edges in G, ejk is the jkth element of
E , and ζk denotes the packet loss effect on the kth edge, i.e., ζk = γij

where i, j are the initial node and terminal node of the k the edge. If
we define z = [z ′

1 , z
′
2 , . . . , z

′
l ]
′, then following similar steps as in [9],

the closed-loop dynamics on edges can be calculated as:

z(t + 1) = (I ⊗ A + Le ζ(t) ⊗ BK) z(t) (37)

with ζ(t) = diag(ζ1 (t), ζ2 (t), . . . , ζl (t)).
With appropriate indexing of edges, we can write the incidence ma-

trix E as E = [Eτ , Ec ], where edges in Eτ are on a spanning tree
and edges in Ec complete cycles in G. We further have that when
G is connected, there exists a matrix T , such that Ec = Eτ T [26].
Moreover, with such indexing of edges, we can decompose the edge
state z as z = [z ′

τ , z ′
c ]′, where zτ is the edge state on the spanning

tree and zc is the remaining edge state. Besides, it is straightforward
to verify that zc = (T ′ ⊗ I)zτ , since z = [z ′

τ , z ′
c ]

′ = (E ′ ⊗ I)x =
([Eτ , Ec ]′ ⊗ I)x and Ec = Eτ T . Let M = E ′

τ E and R = [I, T ], we
have that

zτ (t + 1) = (I ⊗ A)zτ (t) + ((E ′
τ Eτ ζτ (t)) ⊗ (BK))zτ (t)

+ ((E ′
τ Ec ζc (t)) ⊗ (BK))zc (t)

= (I ⊗ A + (E ′
τ Eτ ζτ (t) + E ′

τ Ec ζc (t)T ′) ⊗ (BK))zτ (t)

= (I ⊗ A + (Mζ(t)R′) ⊗ (BK))zτ (t) (38)

where ζτ , ζc represent the packet losses on tree edges and cycle edges,
respectively. The MAS can achieve mean square consensus if and only
if (38) is mean square stable.

The possible sample space of ζ(t) is Φ = {Λ0 , . . . , Λ2 l −1}, where
the ith element Λi is Λi = diag(η1 , . . . , ηl ) with ηj ∈ {0, 1}, j =
1, . . . , l, being the jth component of the binary expansion of i, i.e.,
i = ηl2l−1 + · · · + η1 20 . We make the following assumptions for the
packet loss matrix ζ(t).

Assumption 19: The packet loss process {ζ(t)}t≥0 is a time-
homogeneous Markov stochastic process, which has o states
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{Γ1 , . . . , Γo}, where Γi ∈ Φ. The probability transition matrix Q is
an o × o matrix with the ijth element being pij .

Remark 20: It is possible that certain outcomes in Φ are unlikely
to happen. For example, if two agents are close to each other, the
communication between them can be reliable. It is unlikely that the
communication link would undergo packet losses. In such cases, the
sample space of ζ(t) would be a subset of Φ. Therefore, in Assump-
tion 19, we use o to denote the carnality of the actual sample space of
ζ(t), which might be smaller than 2l .

Therefore, (38) is a Markov jump linear system. In view of [20, Th.
3.9], we have the following consensus result.

Theorem 21: Under Assumptions 1 and 19, the MAS (1) is mean
square consensusable by the protocol (2) if and only if either of the fol-
lowing conditions holds, where Si (K) = (I ⊗ A + MΓiR

′ ⊗ BK):
1) there exist Pi > 0, i = 1, . . . , o and K such that

Pi >
o∑

j=1

pijSj (K)′PjSj (K)

for all i = 1, . . . , o.
2) there exists K such that

ρ ((Q′ ⊗ I)diag (Si (K) ⊗ Si (K))) < 1.

We can show that the consensus criterion 1) in Theorem 21 is equiva-
lent to a feasibility problem with BMI constraints. Therefore, checking
the conditions in Theorem 21 are generally not easy. In the following, a
numerically easy testable condition in terms of the feasibility of LMIs
are proposed.

Theorem 22: Under Assumptions 1 and 19, the MAS (1) is mean
square consensusable by the protocol (2) if there exists κ ∈ R such that
the following LMIs are feasible:

[ −I κV ′
i

κVi κNi + γc I

]
< 0 (39)

for all i = 1, . . . , o, where γc is given in Lemma 12, Ni =∑o
j=1 pij (RΓj M

′ + MΓj R
′), Mi =

∑o
j=1 pij RΓj M

′MΓj R
′ and

Vi is the Cholesky decomposition of Mi , i.e., Mi = ViV
′

i . Moreover,
if (39) is satisfied, a control gain is given by K = κ(B ′PB)−1B ′PA
where P is the solution of (23) with γ = mini λm in (−κNi − κ2Mi ).

Proof: If (39) holds, there exists κ such that κNi + κ2Mi < −γc I
for all i = 1, . . . , o. Since κNi + κ2Mi is real and symmetric, it is di-
agonalizable by an orthogonal matrix Ψ, i.e., Ψ′(κNi + κ2Mi )Ψ = Υ
and Υ is diagonal. Then, we have that Υ < −γc I . In view of Lemma 12,
we can find P > 0 such that

I ⊗ P > I ⊗ A′PA + Υ ⊗ A′PB(B ′PB)−1B ′PA.

Left and right multiply the above inequality with Ψ ⊗ I and Ψ′ ⊗ I ,
we have that

I ⊗ P > I ⊗ A′PA + (κNi + κ2Mi ) ⊗ A′PB(B ′PB)−1B ′PA.

From the definitions of Ni and Mi and the relation that
∑o

j=1 pij = 1,
we further have that

I ⊗ P >
o∑

j=1

pij (I ⊗ A′PA + (κRΓj M
′ + κMΓj R

′

+ κ2RΓj M
′MΓj R

′) ⊗ A′PB(B ′PB)−1B ′PA)

which is the sufficient condition given in 1) in Theorem 21 with P1 =
· · · = Po = I ⊗ P and K = κ(B ′PB)−1B ′PA. �

Remark 23: This paper only discusses the consensusability prob-
lem over undirected graphs. For the consensusability problem with
directed graphs, the compressed edge Laplacian [30] or the directed
edge Laplacian [28], [29] can be used to model the consensus error
dynamics. Then, following similar derivations as in this section, con-
sensus conditions over directed graphs in the presence of Markovian
packet losses can be obtained.

Fig. 2. Communication graphs used in simulations. (a) An undirected
graph. (b) Applying an orientation to edges in (a).

Fig. 3. Mean square consensus error for agent 1 under identical packet
losses.

VI. NUMERICAL SIMULATIONS

In this section, simulations are conducted to verify the derived re-
sults. In simulations, agents are assumed to have system parameters

A =

⎡

⎢
⎣

1.1830 −0.1421 −0.0399
0.1764 0.8641 −0.0394
0.1419 −0.1098 0.9689

⎤

⎥
⎦, B =

⎡

⎢
⎣

0.1697 0.3572
0.5929 0.5165
0.1355 0.9659

⎤

⎥
⎦.

The initial state of each agent is uniformly and randomly generated
from the interval (0, 0.5). We assume that there are four agents and the
undirected communication topology among agents is given in Fig. 2(a).
We first consider the consensus with identical Markovian packet losses.
The Markov packet losses in transmission channels are assumed to have
parameters p = 0.2, q = 0.7. With such configurations, the LMIs in
Theorem 11 are feasible and an admissible control parameter is given
by

K =
[

2.0423 −1.3094 −0.0885
−0.5723 0.2934 −0.3335

]
.

The simulation results are presented by averaging over 1000 runs.
Mean square consensus errors for agent 1 are plotted in Fig. 3, which
shows that the mean square consensus is achieved.

Second, we consider the consensus over nonidentical Marko-
vian packet loss networks. We index the edges and apply a vir-
tual orientation to each edge as in Fig. 2(b). Denote the packet loss
processes in these edges as ζ1 (t), ζ2 (t), ζ3 (t), ζ4 (t). Suppose the
time-homogeneous Markov packet loss process {ζ(t)}t≥0 with ζ(t) =
diag(ζ1 (t), ζ2 (t), ζ3 (t), ζ4 (t)) has three states Γ1 = diag(1, 0, 1, 0),
Γ2 = diag(0, 1, 0, 1), Γ3 = diag(1, 1, 1, 1) and is with the probability
transition matrix

Q =

⎡

⎢
⎣

0.3811 0.1446 0.4743
0.2445 0.5121 0.2434
0.5390 0.0215 0.4395

⎤

⎥
⎦.
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Fig. 4. Mean square consensus error for agent 1 under nonidentical
packet losses.

With such settings, we can show that (39) is feasible, and an admissible
control gain is given by

K =
[

1.7394 −1.3873 0.0771
−0.2133 0.2212 −0.5269

]
.

The simulation results are presented by averaging over 1000 runs. The
consensus error for agent 1 is plotted in Fig. 4, which shows that the
mean square consensus is achieved.

VII. CONCLUSION

This paper studies the mean square consensusability problem of
MASs over Markovian packet loss channels. Necessary and sufficient
consensus conditions are derived under various situations. The derived
results show how the agent dynamics, the network topology, and the
channel loss interplay with each other to allow the existence of a linear
distributed consensus controller. Analytic consensus conditions are
only provided for consensus with identical Markovian packet losses.
The case with nonidentical Markovian packet losses deserves more
effort.

REFERENCES

[1] C. Ma and J. Zhang, “Necessary and sufficient conditions for consen-
susability of linear multi-agent systems,” IEEE Trans. Autom. Control,
vol. 55, no. 5, pp. 1263–1268, May 2010.

[2] K. You and L. Xie, “Network topology and communication data rate
for consensusability of discrete-time multi-agent systems,” IEEE Trans.
Autom. Control, vol. 56, no. 10, pp. 2262–2275, Oct. 2011.

[3] G. Gu, L. Marinovici, and F. L. Lewis, “Consensusability of discrete-time
dynamic multiagent systems,” IEEE Trans. Autom. Control, vol. 57, no. 8,
pp. 2085–2089, Aug. 2012.

[4] Z. Li, Z. Duan, G. Chen, and L. Huang, “Consensus of multiagent systems
and synchronization of complex networks: A unified viewpoint,” IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 1, pp. 213–224, Jan. 2010.

[5] H. L. Trentelman, K. Takaba, and N. Monshizadeh, “Robust synchroniza-
tion of uncertain linear multi-agent systems,” IEEE Trans. Autom. Control,
vol. 58, no. 6, pp. 1511–1523, Jun. 2013.

[6] S. Liu, T. Li, and L. Xie, “Distributed consensus for multiagent systems
with communication delays and limited data rate,” SIAM J. Control Optim.,
vol. 49, no. 6, pp. 2239–2262, 2011.

[7] Z. Qiu, L. Xie, and Y. Hong, “Data rate for distributed consensus of multi-
agent systems with high-order oscillator dynamics,” IEEE Trans. Autom.
Control, vol. 62, no. 11, pp. 6065–6072, Nov. 2017.

[8] Z. Li and J. Chen, “Robust consensus of linear feedback protocols over
uncertain network graphs,” IEEE Trans. Autom. Control, vol. 62, no. 8,
pp. 4251–4258, Aug. 2017.

[9] L. Xu, N. Xiao, and L. Xie, “Consensusability of discrete-time linear
multi-agent systems over analog fading networks,” Automatica, vol. 71,
pp. 292–299, 2016.

[10] T. Qi, L. Qiu, and J. Chen, “MAS consensus and delay limits under
delayed output feedback,” IEEE Trans. Autom. Control, vol. 62, no. 9,
pp. 4660–4666, Sep. 2017.

[11] Z. Wang, H. Zhang, M. Fu, and H. Zhang, “Consensus for high-order
multi-agent systems with communication delay,” Sci. China Inf. Sci.,
vol. 60, no. 9, 2017, Art. no. 092204.

[12] A. Goldsmith, Wireless Communications. Cambridge, U.K.: Cambridge
Univ. Press, 2005.

[13] L. Xie and L. Xie, “Stability analysis of networked sampled-data linear
systems with Markovian packet losses,” IEEE Trans. Autom. Control,
vol. 54, no. 6, pp. 1375–1381, Jun. 2009.

[14] K. You and L. Xie, “Minimum data rate for mean square stabilizability
of linear systems with Markovian packet losses,” IEEE Trans. Autom.
Control, vol. 56, no. 4, pp. 772–785, Apr. 2011.

[15] Y. Mo and B. Sinopoli, “Kalman filtering with intermittent observations:
Tail distribution and critical value,” IEEE Trans. Autom. Control, vol. 57,
no. 3, pp. 677–689, Mar. 2012.

[16] Y. Zhang and Y.-P. Tian, “Consentability and protocol design of multi-
agent systems with stochastic switching topology,” Automatica, vol. 45,
no. 5, pp. 1195–1201, 2009.

[17] L. Xu, Y. Mo, and L. Xie, “Distributed consensus over Markovian packet
loss channels,” in Proc. 7th IFAC Workshop Distrib. Estimation Control
Netw. Syst., Groningen, the Netherlands, 2018, pp. 94–99.

[18] N. Xiao, L. Xie, and L. Qiu, “Feedback stabilization of discrete-time
networked systems over fading channels,” IEEE Trans. Autom. Control,
vol. 57, no. 9, pp. 2176–2189, Sep. 2012.

[19] M. Huang and S. Dey, “Stability of Kalman filtering with Markovian
packet losses,” Automatica, vol. 43, no. 4, pp. 598–607, 2007.

[20] O. L. d. V. Costa, M. D. Fragoso, and R. P. Marques, Discrete-Time
Markov Jump Linear Systems (Probability and its applications). London,
U.K.: Springer, 2005.

[21] O. Toker and H. Ozbay, “On the NP-hardness of solving bilinear matrix
inequalities and simultaneous stabilization with static output feedback,”
in Proc. Amer. Control Conf., 1995, vol. 4, pp. 2525–2526.

[22] L. Schenato, B. Sinopoli, M. Franceschetti, K. Poolla, and S. S. Sastry,
“Foundations of control and estimation over lossy networks,” Proc. IEEE,
vol. 95, no. 1, pp. 163–187, 2007.

[23] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jor-
dan, and S. S. Sastry, “Kalman filtering with intermittent observa-
tions,” IEEE Trans. Autom. Control, vol. 49, no. 9, pp. 1453–1464,
Sep. 2004.

[24] Y. Mo and B. Sinopoli, “A characterization of the critical value for Kalman
filtering with intermittent observations,” in Proc. 47th IEEE Conf. Decis.
Control, Cancun, Mexico, 2008, pp. 2692–2697.

[25] L. Xu, L. Xie, and N. Xiao, “Mean square stabilization over Gaussian
finite-state Markov channels,” IEEE Trans. Control Netw. Syst., vol. 5,
no. 4, pp. 1830–1840, Dec. 2018.

[26] D. Zelazo and M. Mesbahi, “Edge agreement: Graph-theoretic perfor-
mance bounds and passivity analysis,” IEEE Trans. Autom. Control,
vol. 56, no. 3, pp. 544–555, Mar. 2011.

[27] S. Dey, A. S. Leong, and J. S. Evans, “Kalman filtering with faded mea-
surements,” Automatica, vol. 45, no. 10, pp. 2223–2233, 2009.

[28] Z. Zeng, X. Wang, and Z. Zheng, “Convergence analysis using the edge
Laplacian: Robust consensus of nonlinear multi-agent systems via ISS
method,” Int. J. Robust Nonlinear Control, vol. 26, no. 5, pp. 1051–1072,
2016.

[29] Z. Zeng, X. Wang, and Z. Zheng, “Edge agreement of multi-agent
system with quantised measurements via the directed edge Lapla-
cian,” IET Control Theory Appl., vol. 10, no. 13, pp. 1583–1589,
2016.

[30] L. Xu, J. Zheng, N. Xiao, and L. Xie, “Mean square consensus of multi-
agent systems over fading networks with directed graphs,” Automatica,
vol. 95, pp. 503–510, 2018.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


