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Abstract: This paper studies the consensusability problem of multi-agent systems (MASs)
over Markovian packet loss channels. The agents in the MAS communicate with each other
through lossy channels. The transmission loss is described by a Markov process. We try to
determine conditions under which there exists a linear distributed consensus controller such that
the multi-agent system can achieve mean square consensus. First of all, a necessary and sufficient
consensus condition is derived based on the stability of Markov jump linear systems. Then a
numerically verifiable consensus criterion in terms of the feasibility of linear matrix inequalities is
proposed. Furthermore, analytic sufficient conditions and necessary conditions for mean square
consensusability are also provided for general MASs to provide insights into the consensusability
problem. Moreover, for MASs with scalar agent dynamics, analytic necessary and sufficient
consensus conditions are also derived. In the end, numerical simulations are conducted to verify
the derived results.

1. INTRODUCTION

The rapid development of technology has enabled wide
applications of multi-agent systems (MASs). The consen-
sus problem, which requires all agents to agree on certain
quantity of common interest, builds the foundations of
other cooperative tasks. One question arises before control
synthesis: whether there exist distributed controllers such
that the MAS can achieve consensus. This problem is
usually referred to as consensusability of MASs. Previ-
ously, the consensusability problem with perfect commu-
nication channels has been well studied under an undi-
rected/directed communication topology; see, for exam-
ple, Ma and Zhang (2010); Li et al. (2010); You and
Xie (2011); Gu et al. (2012); Trentelman et al. (2013).
In Ma and Zhang (2010), it is shown that to ensure the
consensus of a continuous-time linear MAS, the linear
dynamics should be stabilizable and detectable, and the
undirected communication topology should be connected.
Furthermore, references You and Xie (2011); Gu et al.
(2012) show that for a discrete-time linear MAS, the
product of the unstable eigenvalues of the system matrix
should additionally be upper bounded by a function of the
eigenratio of the undirected graph. Extensions to directed
graphs and robust consensus can be found in Li et al.
(2010); Trentelman et al. (2013).

Most of the consensusability results discussed above are
derived under perfect communications assumptions. How-
ever, this is not the case in practical applications, where
communication channels naturally suffer from limited data
rate constraints, signal-to-noise ratio constraints, time-
delay and so on. Therefore, the consensusability problem
of MASs under communication channel constraints has
been widely studied in Li and Xie (2012); Qiu et al.
(2017); Li and Chen (2017); Xu et al. (2016); Qi et al.
(2016) under different channel models. In this paper, we

are interested in the lossy channels (Sinopoli et al., 2004;
Mo and Sinopoli, 2012), which models the packet drop phe-
nomenon in wireless communications due to the commu-
nication noise, interference or congestion. Previously, the
case with independent and identically distributed (i.i.d.)
channel loss has been studied in Xu et al. (2016). However,
the i.i.d. assumption fails to capture the correlation of
channel conditions over time. Since Markov models are
simple and effective in capturing temporal correlations
of channel conditions (Goldsmith, 2005; Huang and Dey,
2007), we are interested in the consensusability problem
of MASs over Markovian loss channels, where the channel
loss is modeled by a two-state Markov chain. Due to the
existence of correlations of channel conditions over time,
the methods used to deal with the i.i.d. channel loss in Xu
et al. (2016) cannot be applied directly to the Markov
channel loss case.

This paper studies the consensusability problem of MASs
over Markovian loss channels. The contributions are three
folds: 1. a necessary and sufficient consensusability con-
dition is provided; 2. numerically testable criterion and
analytical sufficient and necessary consensusability con-
ditions are derived; 3. critical consensusability conditions
are obtained for special cases of MASs with scalar agent
dynamics.

This paper is organized as follows: The problem formu-
lation is stated in Section 2. The consensusability results
for general systems are derived in Section 3. The special
cases of scalar agent dynamics are discussed in Section
4. Numerical simulations are provided in Section 5. This
paper ends with some concluding remarks in Section 6.

Notation: All matrices and vectors are assumed to be of
appropriate dimensions that are clear from the context.
R,Rn represent the sets of real scalars and n-dimensional
real column vectors, respectively. 1 denotes a column vec-



tor of ones. I represents the identity matrix. A′, A−1, ρ(A)
and det(A) are the transpose, the inverse, the spectral
radius and the determinant of matrix A, respectively. ⊗
represents the Kronecker product. For a symmetric matrix
A, A ≥ 0 (A > 0) means that matrix A is positive semi-
definite (definite). diag(A,B) denotes a diagonal matrix
with diagonal entries A and B. E{·} denotes the expec-
tation operator. The symmetric matrix

[
A C′

C B

]
is abbrevi-

ated as [A ∗C B ].

2. PROBLEM FORMULATION

Let V = {1, 2, . . . , N} be the set of N agents with i ∈ V
representing the i-th agent. Graph G = (V, E) is used to
describe the interaction among agents, where E ⊆ V × V
denotes the edge set with paired agents. An edge (j, i) ∈ E
means that the i-th agent can receive information from the
j-th agent. The neighborhood set Ni of agent i is defined
as Ni = {j |(j, i) ∈ E}. The graph Laplacian matrix
L = [Lij ]N×N is defined as Lii =

∑
j∈Ni

aij , Lij = −aij
for i 6= j, where aii = 0, aij = 1 if (j, i) ∈ E and aij = 0,
otherwise. A directed path on G from agent i1 to agent il is
a sequence of ordered edges in the form of (ik, ik+1) ∈ E ,
k = 1, 2, . . . , l − 1. G is undirected if aij = aji for any
i 6= j. An undirected graph is connected if there is a path
between every pair of distinct nodes.

In this paper, we assume that each agent has the homoge-
neous dynamics

xi(t+ 1) = Axi(t) +Bui(t), i = 1, . . . , N. (1)

where xi ∈ Rn is the system state; ui ∈ Rm is the control
input and (A,B) is controllable.

The interaction among agents is characterized by an undi-
rected connected graph G = {V, E}. The consensus proto-
col is given by

ui(t) =
∑
j∈Ni

γij(t)K(xi(t)− xj(t)), (2)

where γij(t) ∈ {0, 1} models the lossy effect of the
communication channel from agent j to agent i, which
satisfies that γij(t) = 1 when the transmission is successful
at time t, and 0 otherwise.

In the paper, we only consider the identical channel loss
case and make the following assumption.

Assumption 1. γij(t) = γ(t) for all i, j ∈ V and t ≥ 0.
Moreover, {γ(t)}t≥0 is a Markov process with two states
{0, 1} and the transition probability matrix Q is

Q =

[
1− q q
p 1− p

]
, (3)

where 0 < p < 1 represents the failure rate and 0 < q < 1
denotes the recovery rate.

Remark 2. The assumption of identical channel loss dis-
tributions is a little bit conservative, which only applies
to the scenario that the whole communication topology
is affected by a uniform disturbance. However, it is the
most simple case in studying the consensus problem over
Markovian packet loss channels and is expected to shed
light on solutions to more general nonidentical cases.

Throughout the paper, we say that the MAS (1) is mean
square consensusable by the protocol (2) if there exists K

such that the MAS (1) can achieve mean square consensus
under the protocol (2), i.e., limt→∞ E

{
‖xi(t)− xj(t)‖2

}
=

0 for all i, j ∈ V.

To avoid triviality, we make the following assumption as
in Section II.B of You and Xie (2011). The intuition be-
hind the assumption is that stable sub-dynamics without
control actions converge to zero automatically and zero is
the trivial consensus value.

Assumption 3. All the eigenvalues of A are either on or
outside the unit disk.

3. CONSENSUSABILITY RESULTS

Define the consensus error as

δ(t) = (I − 1

N
11′)x(t),

where x(t) = [x1(t)′, . . . , xN (t)′]′. Following similar deriva-
tions as in Xu et al. (2016), the consensus error dynamics
is given by

δ(t+ 1) = (I ⊗A+ γ(t)L ⊗BK)δ(t), (4)

where L is the graph Laplacian of G. If there exists
K such that system (4) is mean square stable, i.e.,
limt→∞ E {δ(t)δ(t)′} = 0, the MAS can achieve mean
square consensus.

Similar to the analysis in Xu et al. (2016), we can show
that the mean square stability of (4) is equivalent to the
simultaneous mean square stability of

δi(t+ 1) = (A+ λiγ(t)BK)δi(t), i = 2, . . . , N, (5)

where λi with i = 2, . . . , N are the nonzero positive
eigenvalues of L with λ2 ≤ · · · ≤ λN .

Since {γ(t)}t≥0 is a Markov process, the consensusability is
equivalent to the simultaneous mean square stabilizability
of the N − 1 Markov jump linear systems (5). In view of
Theorem 3.9 in Costa et al. (2005) describing the stability
of a single Markov jump linear system, we can obtain
the following consensusability condition. Theorem 4.2) is
obtained by studying the stability of an equivalent linear
system, which results in a spectral radius characterization.

Theorem 4. The MAS (1) is mean square consensusable
by the protocol (2) if and only if either of the following
conditions holds

1) There exist K, Pi,1 > 0, Pi,2 > 0 with i = 2, . . . , N ,
such that

Pi,1 − (1− q)A′Pi,1A
− q(A+ λiBK)′Pi,2(A+ λiBK) > 0,

Pi,2 − pA′Pi,1A
− (1− p)(A+ λiBK)′Pi,2(A+ λiBK) > 0.

2) There exists K such that

ρ (Hi) < 1,

for all i = 2, . . . , N with

Hi =[
(1− q)A⊗A p(A+ λiBK)⊗ (A+ λiBK)
qA⊗A (1− p)(A+ λiBK)⊗ (A+ λiBK)

]
.

The consensus criterion in Theorem 4.1) can be shown
to be equivalent to a feasibility problem with bilinear
matrix inequality (BMI) constraints, which is stated in
the following proposition.



Proposition 5. The MAS (1) is mean square consensusable
by the protocol (2) if and only if there exist Qi,1 > 0,
Qi,2 > 0 with i = 2, . . . , N and K such that the following
BMIs hold for all i, Qi,1 ∗ ∗√

q(AQi,1 + λiBKQi,1) Qi,2 ∗√
1− qAQi,1 0 Qi,1

 > 0, (6)

 Qi,2 ∗ ∗√
1− p(AQi,2 + λiBKQi,2) Qi,2 ∗√

pAQi,2 0 Qi,1

 > 0. (7)

Proof: If there exist Qi,1 > 0, Qi,2 > 0,K such that

(6) and (7) hold, then there exist Pi,1 = Q−1
i,1 > 0,

Pi,2 = Q−1
i,2 > 0 and K such that

 P−1
i,1 ∗ ∗√

q(A+ λiBK)P−1
i,1 P−1

i,2 ∗√
1− qAP−1

i,1 0 P−1
i,1

 > 0, (8)

 P−1
i,2 ∗ ∗√

1− p(A+ λiBK)P−1
i,2 P−1

i,2 ∗√
pAP−1

i,2 0 P−1
i,1

 > 0. (9)

Left and right multiply (8) with diag{Pi,1, I, I}, and left
and right multiply (9) with diag{Pi,2, I, I}, we obtain Pi,1 ∗ ∗√

q(A+ λiBK) P−1
i,2 ∗√

1− qA 0 P−1
i,1

 > 0,

 Pi,2 ∗ ∗√
1− p(A+ λiBK) P−1

i,2 ∗√
pA 0 P−1

i,1

 > 0,

which gives the conditions in Theorem 4.1). The proof is
completed. �

It is well known that checking the solvability of a bilinear
matrix inequality (BMI), is generally NP-hard (Toker and
Ozbay, 1995). Therefore, in the sequel, we propose a
sufficient consensus condition in terms of the feasibility
of linear matrix inequalities (LMIs) by fixing K to be of
certain form.

Theorem 6. If there exist Q1 > 0, Q2 > 0, Z1, Z2 such
that the following LMIs hold,

Q1 ∗ ∗ ∗√
qc(AQ1 +BZ1) Q2 ∗ ∗√
q(1− c)AQ1 0 Q2 ∗√

1− qAQ1 0 0 Q1

 > 0, (10)


Q2 ∗ ∗ ∗√

(1− p)c(AQ2 +BZ2) Q2 ∗ ∗√
(1− p)(1− c)AQ2 0 Q2 ∗√

pAQ2 0 0 Q1

 > 0, (11)

where c = 1 −
(
λN−λ2

λN+λ2

)2

> 0, then the MAS (1) is mean

square consensusable by the protocol (2) and an admissible
control gain is given by

K = − 2

λ2 + λN
(B′Q−1

2 B)−1B′Q−1
2 A.

Proof: If there exist Q1 > 0, Q2 > 0, Z1, Z2 such that
(10) and (11) hold, then there exist P1 = Q−1

1 > 0,
P2 = Q−1

2 > 0, K1 = Z1P1 and K2 = Z2P2 such that


P−1

1 ∗ ∗ ∗√
qc(A+BK1)P−1

1 P−1
2 ∗ ∗√

q(1− c)AP−1
1 0 P−1

2 ∗√
1− qAP−1

1 0 0 P−1
1

 > 0, (12)


P−1

2 ∗ ∗ ∗√
(1− p)c(A+BK2)P−1

2 P−1
2 ∗ ∗√

(1− p)(1− c)AP−1
2 0 P−1

2 ∗√
pAP−1

2 0 0 P−1
1

 > 0. (13)

Left and right multiply (12) with diag{P1, I, I, I}, and left
and right multiply (13) with diag{P2, I, I, I}, we obtain

P1 ∗ ∗ ∗√
qc(A+BK1) P−1

2 ∗ ∗√
q(1− c)A 0 P−1

2 ∗√
1− qA 0 0 P−1

1

 > 0,


P2 ∗ ∗ ∗√

(1− p)c(A+BK2) P−1
2 ∗ ∗√

(1− p)(1− c)A 0 P−1
2 ∗√

pA 0 0 P−1
1

 > 0.

In view of the Schur complement lemma (Horn and John-
son, 1985), we know that

P1 − (1− q)A′P1A− q(1− c)A′P2A
− qc(A+BK1)′P2(A+BK1) > 0, (14)

P2 − pA′P1A− (1− p)(1− c)A′P2A
− (1− p)c(A+BK2)′P2(A+BK2) > 0. (15)

For any P2 > 0 and K, we have

(A+BK)′P2(A+BK)

= A′P2A−A′P2B(B′P2B)−1B′P2A

+ (K + (B′P2B)−1B′P2A)′(B′P2B)

× (K + (B′P2B)−1B′P2A),

which implies

A′P2B(B′P2B)−1B′P2A

≥ A′P2A− (A+BK)′P2(A+BK).

Therefore

− cA′P2A+ c(A+BK)′P2(A+BK)

≥ −cA′P2B(B′P2B)−1B′P2A,

for any K and P2 > 0.

In view of the above result and (14) (15), we have,



P1 − (1− q)A′P1A

q
> A′P2A

− cA′P2B(B′P2B)−1B′P2A, (16)

P2 − pA′P1A

1− p
> A′P2A

− cA′P2B(B′P2B)−1B′P2A. (17)

Since

−c = min
k

max
i

(λ2
i k

2 + 2λik) (18)

and the optimal k to the above minmax problem is

ǩ = − 2

λ2 + λN
,

we know that
P1 − (1− q)A′P1A

q
> A′P2A

+ (λ2
i ǩ

2 + 2λiǩ)A′P2B(B′P2B)−1B′P2A, (19)

P2 − pA′P1A

1− p
> A′P2A

+ (λ2
i ǩ

2 + 2λiǩ)A′P2B(B′P2B)−1B′P2A (20)

hold for all i = 2, . . . , N . Therefore Theorem 4.1) is
satisfied with

Pi,1 = P1, Pi,2 = P2,

K = ǩ(B′P2B)−1B′P2A.

The proof is completed. �

The criterion stated in Theorem 6 is easy to verify. How-
ever, it fails to provide insights into the consensusability
problem. In the following, we provide an analytical suffi-
cient consensusability condition, which shows directly how
the channel properties, the network topology and the agent
dynamics interplay with each other to allow the existence
of a distributed consensus controller. The following lemma
is needed in proving the main result and is stated first.

Lemma 7. (Schenato et al. (2007)). Under Assumption 3,
if (A,B) is controllable, then

P > A′PA− γA′PB(B′PB)−1B′PA (21)

admits a solution P > 0, if and only if γ is greater than a
critical value γc > 0.

Remark 8. The value γc is of great importance in deter-
mining the critical lossy probability in Kalman filtering
over intermittent channels; see, for example, Sinopoli et al.
(2004); Schenato et al. (2007); Mo and Sinopoli (2008).
It has been shown that the critical value γc is only de-
termined by the pair (A,B) (Mo and Sinopoli, 2008).
However, an explicit expression of γc is only available for
some specific situations. For example, when rank(B) = 1,
γc = 1 − 1

Πi|λi(A)|2 and when B is square and invertible,

γc = 1− 1
maxi |λi(A)|2 . For other cases, the critical value γc

can be obtained by solving a quasiconvex LMI optimiza-
tion problem (Schenato et al., 2007).

Theorem 9. The MAS (1) is mean square consensusable
by the protocol (2) if

γ1 = min{q, 1− p}

[
1−

(
λN − λ2

λN + λ2

)2
]
> γc, (22)

where γc is given in Lemma 7. Moreover, an admissible
control gain is given by

K = − 2

λ2 + λN
(B′PB)−1B′PA,

where P is the solution to (21) with γ = γ1.

Proof: If the (22) holds, in view of Lemma 7, there exists
a P > 0 to (21) with γ = γ1, such that

P > A′PA− qcA′PB(B′PB)−1B′PA,

P > A′PA− (1− p)cA′PB(B′PB)−1B′PA.

Since −c = maxi(λ
2
i ǩ

2 + 2λiǩ) with ǩ = − 2
λ2+λN

, we have

P > A′PA+ q(2λiǩ + λ2
i ǩ

2)A′PB(B′PB)−1B′PA,

P > A′PA+ (1− p)(2λiǩ + λ2
i ǩ

2)A′PB(B′PB)−1B′PA

for all i = 2, . . . , N , which is the condition in Theorem 4.1)
with

Pi,1 = Pi,2 = P

K = ǩ(B′PB)−1B′PA.

The proof is completed. �

In conjunction with the analytic sufficient consensusabil-
ity condition in Theorem 9, we also provide an explicit
necessary consensusability condition as stated below.

Theorem 10. The MAS (1) is mean square consensusable
by the protocol (2) only if there exists K such that

(1− q) 1
2 ρ(A) < 1, (23)

(1− p) 1
2 ρ(A+ λiBK) < 1 (24)

for all i = 2, . . . , N .

Moreover, when the agent is with single input, i.e., m =
1, the MAS (1) is mean square consensusable by the
protocol (2) only if

(1− q) 1
2 ρ(A) < 1, (25)

(1− p)n
2 det(A)

λN − λ2

λN + λ2
< 1. (26)

Proof: If the MAS can achieve mean square consensus, in
view of Theorem 4.1), we have that there exist Pi,1 > 0,
Pi,2 > 0 and K such that

Pi,1 > (1− q)A′Pi,1A,
Pi,2 > (1− p)(A+ λiBK)′Pi,2(A+ λiBK),

for all i = 2, . . . , N . Further from Lyapunov stability
theory, we can obtain the necessary conditions (23), (24).

When the agent is with single input, following similar line
of argument as in the necessity proof of Lemma 3.1 in You
and Xie (2011), we can obtain the necessary condition (26)
from (24). The proof is completed. �

4. SPECIAL CASE: SCALAR AGENT DYNAMICS

When all the agents are with scalar dynamics. We can
obtain a closed-form consensusability condition. The fol-
lowing lemma is needed in the proof of the main result and
is stated first.

Lemma 11. (Xu et al. (2017)). Let Q be defined in (3);
D = [ 1 0

0 δ ] with 0 < q, p, δ < 1; λ ∈ R, |λ| ≥ 1. The
following conditions are equivalent:

(1)

λ2ρ(Q′D) < 1,



(2)

1− λ2(1− q) > 0, (27)

λ2δ

[
1 +

p(λ2 − 1)

1− λ2(1− q)

]
< 1. (28)

Without loss of generality, for scalar agent dynamics, we
let A = a,B = 1,K = k. The main result is stated as
follows.

Theorem 12. The MAS (1) with scalar agent dynamics is
mean square consensusable by the protocol (2) if and only
if

(1− q)a2 < 1, (29)

a2

(
λN − λ2

λN + λ2

)2 [
1 +

p(a2 − 1)

1− a2(1− q)

]
< 1. (30)

Proof: In view of Theorem 4.2), for scalar agent dynamics,
the MAS (1) is mean square consensusable by the proto-
col (2) if and only if there exists k such that

a2ρ

(
Q′ ×

[
1 0

0
(a+ λik)2

a2

])
< 1,

for all i = 2, . . . , N .

From Lemma 11, a necessary and sufficient consensus
condition is that if there exists k such that for all i =
2, . . . , N .

(1− q)a2 < 1, (31)

(a+ λik)
2

[
1 +

p(a2 − 1)

1− a2(1− q)

]
< 1. (32)

Since (32) holds for all i, we have that

min
k

max
i

(a+ λik)2

[
1 +

p(a2 − 1)

1− a2(1− q)

]
< 1.

Moreover, since

min
k

max
i

(a+ λik)2 = a2

(
λN − λ2

λN + λ2

)2

,

we can obtain the necessary and sufficient consensusability
condition (29) (30) from (31)(32). The proof is completed.
�

Interestingly, we can show that when the agent dynamics
is scalar, the sufficient condition indicated in Theorem 6
is also necessary as stated in the following proposition.

Proposition 13. The MAS (1) with scalar agent dynamics
is mean square consensusable by the protocol (2) if and
only if the condition in Theorem 6 is satisfied.

Proof: Theorem 6 is equivalent to check the solvability
of (16) and (17). For scalar systems with A = a,B =
1, (16) (17) changes to

[1− (1− q)a2]P1 > qa2(1− c)P2, (33)

[1− (1− p)(1− c)a2]P2 > pa2P1. (34)

We can show that the necessary and sufficient condition to
guarantee the solvability of the above inequality is given
by (29) and (30).

Necessity: Since P1 > 0 and qa2(1 − c)P2 > 0, we have
from (33) that 1− (1− q)a2 > 0, which gives (29).

Let θ = 1−c =
(
λN−λ2

λN+λ2

)2

. We can obtain a lower bound of

P1 from (33) and substitute this bound into (34) to obtain

[1− (1− p)θa2]P2 > pa2 qa2θP2

[1− (1− q)a2]
.

Since P2 > 0, we further have that

[1− (1− p)θa2][1− (1− q)a2]− pqa4θ > 0,

which implies

a2θ[(1− p)− a2(1− p− q)] < 1− a2(1− q).
Dividing both sides by 1− a2(1− q), we can obtain (30).

The sufficiency can be proved by reversing the necessity
proof. The proof is completed. �

Proposition 13 shows that for scalar agent dynamics, there
is no loss of optimality by letting P2,1 = . . . = PN,1 and
P2,2 = . . . = PN,2. However, the optimality is broken when
we further require P2,1 = . . . = PN,1 = P2,2 = . . . = PN,2,
which is shown by the following example. Consider the
case that A = 2, B = 1, λ2 = 2 and λN = 3, then the
tolerable (p, q) from Theorem 12 are given by

q >
3

4
,

p < 7× (q − 3

4
).

While the sufficiency indicated by Theorem 9, which is
obtained by requiring P2,1 = . . . = PN,1 = P2,2 = . . . =
PN,2, is given by

q >
25

32
, p <

7

32
.

The tolerable failure rate and recovery rate are plotted
in Fig. 1. It is clear that the result in Theorem 9 is
conservative in the case of scalar agent dynamics.
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Fig. 1. Tolerable failure rate and recovery rate

5. NUMERICAL SIMULATIONS

In this section, simulations are conducted to verify the
derived results. In simulations, agents are assumed to have
system parameters

A =

[
1.1830 −0.1421 −0.0399
0.1764 0.8641 −0.0394
0.1419 −0.1098 0.9689

]
, B =

[
0.1697 0.3572
0.5929 0.5165
0.1355 0.9659

]
.



1

2 3

4

Fig. 2. Undirected communication graphs used in simula-
tions

The initial state of each agent is uniformly and randomly
generated from the interval (0, 0.5). We assume that there
are four agents and the undirected communication topol-
ogy among agents is given in Fig. 2. The Markov packet
losses in transmission channels are assumed to have param-
eters p = 0.2, q = 0.7. The simulation results are presented
by averaging over 1000 runs. With such configurations, the
LMIs in Theorem 6 are feasible and an admissible control
parameter is given by

K =

[
2.0646 −1.3157 −0.0939
−0.5767 0.2947 −0.3324

]
.

Mean square consensus errors for agent 1 are plotted in
Fig. 3, which shows that the mean square consensus is
achieved.
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Fig. 3. Mean square consensus error for agent 1

6. CONCLUSIONS

This paper studies the mean square consensusability prob-
lem of MASs over identical Markovian packet loss chan-
nels. Necessary and sufficient consensus conditions are
derived under various situations. The derived results show
how the agent dynamics, the network topology and the
channel loss interplay with each other to allow the ex-
istence of a distributed consensus controller. This paper
only discusses the identical packet loss cases. The problem
with nonidentical channel losses deserves more effort.
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