

Distributed Consensus over Markovian Packet Loss Channels

Liang Xu, Yilin Mo and Lihua Xie School of EEE, Nanyang Technological University, Singapore

Motivations

Most of the existing consensusability results are derived under **perfect communications** assumptions.

Communication Channel Constraint: In practical applications, communication channels naturally suffer from limited data rate constraints, signal-to-noise ratio constraints, time-delay, packet drop and so on.

Packet Drop Phenomenon: Packet drop

Main Results

Define consensus error $\delta(t) = (I - \frac{1}{N}\mathbf{11'})x(t)$, the consensus error dynamics is

 $\delta(t+1) = (I \otimes A + \gamma(t)\mathcal{L} \otimes BK)\delta(t),$

where \mathcal{L} is the graph Laplacian. The stability is equivalent to that of Markov jump linear systems for $i = 2, \ldots, N$,

 $\delta_i(t+1) = (A + \lambda_i \gamma(t) BK) \delta_i(t), \quad (3)$

Remark: The consensus criterion in Theorem 4 is equivalent to a feasibility problem with bilinear matrix inequality (BMI) constraints. Checking the solvability of a BMI is generally **NP-hard**.

How to obtain verifiable conditions?

Search over $P_{2,1} = \ldots = P_{N,1} = P_1$, $P_{2,2} = \ldots = P_{N,2} = P_2$ and $K = k(B'P_2B)^{-1}B'P_2A$:

appears in wireless communications due to communication noise, interference or congestion. Markov models are simple and effective in capturing **temporal correlations** of packet drops in wireless communication.

Model Setup

Agent Dynamics:

$$x_i(t+1) = Ax_i(t) + Bu_i(t), i = 1, \dots, N$$
 (1)

where $x_i \in \mathbb{R}^n$ and $u_i \in \mathbb{R}^m$.

Lossy Communication among Agents:

Agent $j, x_j \longrightarrow \gamma_{ij} = 0, 1$ $\gamma_{ij} x_j$, Agent i

Consensus Protocol:

where λ_i s are the nonzero positive eigenvalues of \mathcal{L} with $\lambda_2 \leq \cdots \leq \lambda_N$.

1 Scalar Systems

Theorem 12 *The MAS* (1) *with scalar agent dynamics is mean square consensusable by the protocol* (2) *if and only if*

$$(1-q)a^{2} < 1,$$

$$a^{2} \left(\frac{\lambda_{N} - \lambda_{2}}{\lambda_{N} + \lambda_{2}}\right)^{2} \left[1 + \frac{p(a^{2} - 1)}{1 - a^{2}(1-q)}\right] < 1$$

Proof Sketch:

1. Stability Markov jump linear systems: there exists *k* such that

$$a^2 \rho \left(Q' \times \begin{bmatrix} 1 & 0 \\ 0 & \frac{(a+\lambda_i k)^2}{a^2} \end{bmatrix} \right) < 1,$$

 \Rightarrow **Theorem 6**: sufficiency in terms of LMIs

Search over $P_{2,1} = \ldots = P_{N,1} =$ $P_{2,2} = \ldots = P_{N,2} = P$ and K = $k(B'PB)^{-1}B'PA$, solveability of modified ARE:

 \Rightarrow **Theorem 9**: analytic sufficiency, given by

 $\min\{q, 1-p\} \left[1 - \left(\frac{\lambda_N - \lambda_2}{\lambda_N + \lambda_2}\right)^2 \right] > \gamma_c,$

where γ_c is the critical value determining the solvability of $P > A'PA - \gamma A'PB(B'PB)^{-1}B'PA$.

Necessity from Theorem 4, for i = 2, ..., N,

 $P_{i,1} > (1-q)A'P_{i,1}A,$ $P_{i,2} > (1-p)(A+\lambda_i BK)'P_{i,2}(A+\lambda_i BK)$

 $\Rightarrow \textbf{Theorem 10: analytic necessity, single}$ input system given by $(1-q)^{\frac{1}{2}}\rho(A) < 1,$ $(1-p)^{\frac{n}{2}} \det(A) \left(\frac{\lambda_N - \lambda_2}{\lambda_N + \lambda_2}\right) < 1.$

$$u_i(t) = \sum_{j \in \mathcal{N}_i} \gamma_{ij}(t) K(x_i(t) - x_j(t))$$
 (2)

where $\gamma_{ij(t)} \in \{0,1\}$ models packet drop effect from agent *j* to agent *i*.

Problems and Assumptions

Problems:

When is the MAS mean square consensusable? Conditions for the existences of Ksuch that for all i, j

 $\lim_{t \to \infty} \mathbb{E}\left\{ \|x_i(t) - x_j(t)\|^2 \right\} = 0.$

Assumptions:

- Connected undirected graph
- Unstable agent dynamics: all the eigenvalues of A are either on or out-

for all $i = 2, \ldots, N$.

2. Equivalent condition: there exists k such that for all i = 2, ..., N,

$$(1-q)a^2 < 1,$$
$$(a+\lambda_i k)^2 \left[1 + \frac{p(a^2-1)}{1-a^2(1-q)}\right] < 1$$

3. Consensusability follows from

 $\min_{k} \max_{i} (a + \lambda_{i}k)^{2} = a^{2} \left(\frac{\lambda_{N} - \lambda_{2}}{\lambda_{N} + \lambda_{2}}\right)^{2}.$

2 General Systems

Necessary and sufficient condition from stability of MJLSs

Theorem 4 *The MAS* (1) *is mean square consensusable by the protocol* (2) *if and only if there exist*

3 Comparisons

Let A = 2, B = 1, $\lambda_2 = 2$ and $\lambda_N = 3$,

side the unit disk; (A, B) is controllable.

• Identical Markovian packet loss:

 $\gamma_{ij}(t) = \gamma(t)$ for all $(i, j) \in \mathcal{E}$ and $t \geq 0$. Moreover, $\{\gamma(t)\}_{t\geq 0}$ is a time-homogeneous Markov process with two states $\{0, 1\}$ and the transition probability matrix $Q = \begin{bmatrix} 1-q & q \\ p & 1-p \end{bmatrix}$, where 0 representsthe failure rate and <math>0 < q < 1 denotes the recovery rate. $K, P_{i,1} > 0, P_{i,2} > 0$ with i = 2, ..., N, such that

$$P_{i,1} - (1-q)A'P_{i,1}A - q(A+\lambda_i BK)'P_{i,2}(A+\lambda_i BK) > 0,$$

$$P = \pi A'P = A$$

 $P_{i,2} - pA'P_{i,1}A - (1-p)(A+\lambda_i BK)'P_{i,2}(A+\lambda_i BK) > 0.$

Figure 1: Tolerable failure rate and recovery rate

Conclusion

- Necessary and sufficient conditions for mean square consensus over identical Markovian packet loss channels are obtained.
- **Conclusion:** The consensusability is related to **the statistics of Markovian packet drops**, **the eigenratio of the graph**, and **the instability degree of agent dynamics**.