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Motivations
Most of the existing consensusability results
are derived under perfect communications
assumptions.

� Communication Channel Constraint: In
practical applications, communication
channels naturally suffer from limited
data rate constraints, signal-to-noise ra-
tio constraints, time-delay, packet drop
and so on.

� Packet Drop Phenomenon: Packet drop
appears in wireless communications
due to communication noise, interfer-
ence or congestion. Markov models are
simple and effective in capturing tempo-
ral correlations of packet drops in wire-
less communication.

Model Setup
� Agent Dynamics:

xi(t+ 1) = Axi(t) +Bui(t), i = 1, . . . , N (1)

where xi ∈ Rn and ui ∈ Rm.
� Lossy Communication among Agents:

Agent j, xj γijxj , Agent i
γij = 0, 1

� Consensus Protocol:

ui(t) =
∑
j∈Ni

γij(t)K(xi(t)− xj(t)) (2)

where γij(t) ∈ {0, 1} models packet drop
effect from agent j to agent i.

Problems and Assumptions
� Problems:

When is the MAS mean square consensus-
able? Conditions for the existences of K
such that for all i, j

lim
t→∞

E
{
‖xi(t)− xj(t)‖2

}
= 0.

� Assumptions:

• Connected undirected graph

• Unstable agent dynamics:
all the eigenvalues of A are either on or out-
side the unit disk; (A,B) is controllable.

• Identical Markovian packet loss:

0 11− q
q

1− p
p

γij(t) = γ(t) for all (i, j) ∈ E and t ≥ 0.
Moreover, {γ(t)}t≥0 is a time-homogeneous
Markov process with two states {0, 1} and
the transition probability matrix Q =[ 1−q q

p 1−p
]
, where 0 < p < 1 represents

the failure rate and 0 < q < 1 denotes the
recovery rate.

Main Results
Define consensus error δ(t) = (I − 1

N 11′)x(t),
the consensus error dynamics is

δ(t+ 1) = (I ⊗A+ γ(t)L ⊗BK)δ(t),

where L is the graph Laplacian. The stability is
equivalent to that of Markov jump linear sys-
tems for i = 2, . . . , N,

δi(t+ 1) = (A+ λiγ(t)BK)δi(t), (3)

where λis are the nonzero positive eigenvalues
of Lwith λ2 ≤ · · · ≤ λN .

1 Scalar Systems

Theorem 12 The MAS (1) with scalar agent dy-
namics is mean square consensusable by the proto-
col (2) if and only if

(1− q)a2 < 1,

a2
(
λN − λ2
λN + λ2

)2 [
1 +

p(a2 − 1)

1− a2(1− q)

]
< 1.

Proof Sketch:

1. Stability Markov jump linear systems:
there exists k such that

a2ρ

(
Q′ ×

[
1 0

0 (a+λik)
2

a2

])
< 1,

for all i = 2, . . . , N .

2. Equivalent condition: there exists k such
that for all i = 2, . . . , N ,

(1− q)a2 < 1,

(a+ λik)
2

[
1 +

p(a2 − 1)

1− a2(1− q)

]
< 1.

3. Consensusability follows from

min
k

max
i

(a+ λik)
2 = a2

(
λN − λ2
λN + λ2

)2

.

2 General Systems

Necessary and sufficient condition from sta-
bility of MJLSs

Theorem 4 The MAS (1) is mean square consen-
susable by the protocol (2) if and only if there exist
K, Pi,1 > 0, Pi,2 > 0 with i = 2, . . . , N , such that

Pi,1 − (1− q)A′Pi,1A
− q(A+ λiBK)′Pi,2(A+ λiBK) > 0,

Pi,2 − pA′Pi,1A
− (1− p)(A+ λiBK)′Pi,2(A+ λiBK) > 0.

Remark: The consensus criterion in Theorem 4
is equivalent to a feasibility problem with
bilinear matrix inequality (BMI) constraints.
Checking the solvability of a BMI is generally
NP-hard.

How to obtain verifiable conditions?

� Search over P2,1 = . . . = PN,1 = P1,
P2,2 = . . . = PN,2 = P2 and K =
k(B′P2B)−1B′P2A:
⇒ Theorem 6: sufficiency in terms of LMIs

� Search over P2,1 = . . . = PN,1 =
P2,2 = . . . = PN,2 = P and K =
k(B′PB)−1B′PA, solveability of modi-
fied ARE:
⇒ Theorem 9: analytic sufficiency, given by

min{q, 1− p}

[
1−

(
λN − λ2
λN + λ2

)2
]
> γc,

where γc is the critical value determin-
ing the solvability of P > A′PA −
γA′PB(B′PB)−1B′PA.

� Necessity from Theorem 4, for i = 2, . . . , N ,

Pi,1 > (1− q)A′Pi,1A,
Pi,2 > (1− p)(A+ λiBK)′Pi,2(A+ λiBK)

⇒ Theorem 10: analytic necessity, single
input system given by

(1− q) 1
2 ρ(A) < 1,

(1− p)n
2 det(A)

(
λN − λ2
λN + λ2

)
< 1.

3 Comparisons

Let A = 2, B = 1, λ2 = 2 and λN = 3,

Theorem 10 (Necessity)

Theorem 12&6 (Nece and Suff)

Theorem 9 (Sufficiency)
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Figure 1: Tolerable failure rate and recovery rate

Conclusion
� Necessary and sufficient conditions for mean square consensus over identical Markovian

packet loss channels are obtained.
� Conclusion: The consensusability is related to the statistics of Markovian packet drops, the

eigenratio of the graph, and the instability degree of agent dynamics.


