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Networked Control System

+ Control over Communication Channels

Communication Channels

Plant SensorController

Limited capacity

Packet lossQuantization

Random delay

What is the critical channel requirement (e.g., the minimal amount of packet
arrival rate, data rate or capacity) such that the stability of the networked con-
trol system can be achieved?
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UAV Flight Control System

Figure: How drones are controlled *

*Retrieved from http://www.washingtonpost.com/wp-srv/special/national/drone-
crashes/how-drones-work/
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Motivation
+ Fading Phenomenon in Wireless Communication

å Urban, indoor, and underwater environments . . .

å Fading is the time variation of channel strengths

4 shadowing from obstacles affecting the wave propagation
4 multipath propagation
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Fading Channel Model

⊗ ⊕
ωtγt

rtst

å Mathematical model

rt = γtst + ωt, t = 0, 1, 2, . . .

4 Power constraint E
{

s2
t
}
≤ P; additive noise ωt ∼ N (0, σ2

ω)
4 Fading effect {γt}t≥0: stochastic i.i.d. (Rayleigh, Nakagami, Rician)

å More realistic than

4 AWGN channel (γt ≡ 1): satellite communication, air-to-air, and
optical communication

4 Real erasure channel (γt ∼ Bernoulli(ε)*, ωt = 0, P → ∞): packet
drop process

*γt∼Bernoulli(ε) means Pr(γt = 1) = 1 − ε, Pr(γt = 0) = ε
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Objective of Research

+ Problems Interested

å Control over fading channel/networks

4 How the channel fading affects the stability of the networked control
system?

+ Contributions

å Networked control over fading channels

4 Characterization of the fading channel capacity for control of single
plants with causal encoder/decoder

å Distributed consensus over fading networks

4 Characterization of how fading parameters, communication topol-
ogy and agent dynamics affect the consensusability of multi-agent
systems
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Control over Communication Channels

+ Existing Results

å Noiseless digital channels [Nair and J.Evans, 2004]

å Stochastic digital channels [Minero et al., 2009, You and Xie, 2011a]

å Real erasure channels [Sinopoli et al., 2004, Gupta et al., 2007]

å AWGN channels [Braslavsky et al., 2007, Freudenberg et al., 2010]

å Multiplicative noise channels [Elia, 2005, Xiao et al., 2012]

å Fading channels with linear controller and i.i.d. fading [Xiao and Xie, 2011]

+ Existing Problems on Control over Fading Channels

å Fading channels with nonlinear coding and controlling strategies?

4 Studied in Control over Power Constrained Fading Channels

å Fading channels with correlated channel fading?

4 Studied in Control over Gaussian Finite-state Markov Channels
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Consensus of Multi-agent Systems

å Basics of consensus

4 Consensus means to reach an agreement regarding a certain quan-
tity of interest that depends on the state of all agents.

4 Wide applications: sensor fusion, formation control, distributed com-
putation . . .

å Graph theory

4 Graph: G = {V, E}
4 Neighborhood: Ni = {j ∈ V|(j, i) ∈ E}
4 Adjacency matrix: A = [aij]N×N

4 Degree matrix: degin(i) =
∑N

j=1 aij, D =
diag(degin(1), . . . , degin(N))

4 Laplacian matrix: L = D− A
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Consensus with Communication Constraint

Consensusability: When are the MASs consensusable?
+ Existing Results on Consensusability

å Consensus with perfect communication [Ma and Zhang, 2010, You and
Xie, 2011, Gu et al., 2012]

å Consensus with data rate limitations [Li et al., 2011, Qiu et al., 2016]

å Consensus with bounded input delay [Qi et al., 2016]

å Consensus with identical faded communication over undirected graphs
[Xiao et al., 2014]

+ Existing Problems on Consensus over Fading Networks

å Consensus over nonidentical fading networks?

4 Studied in Consensus over Undirected Fading Networks

å Consensus over fading networks with directed graphs?

4 Studied in Consensus over Directed Fading Networks
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Problem Formulation

xt+1 = Axt + But

Plant

st = Et(xt, rt−1, γt−1)

Sensor/Encoder

ut = Dt(rt, γt)

Controller/Decoder

⊗⊕ γtωt

strt

ut xt

rt−1, γt−1

What is the requirement on channels such that there exist coding and control-
ling strategies {Et}t≥0, {Dt}t≥0 that can mean square stabilize the LTI system,
i.e., to render limt→∞ E {xtx′t} = 0?
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Challenges and Methodologies

+ Assumptions

å All the eigenvalues of A are either on or outside the unit circle

å Channel fading knowledge at the receiver side (via channel estimation)

å Noiseless channel feedback

+ Challenges and Methodologies

1 Necessary conditions?

4 Information theoretic argument
2 Stabilization of scalar systems: encoder and decoder design?

4 Revised SK coding scheme [Schalkwijk and Kailath, 1966]
3 Stabilization of vector systems: vector source xt and scalar channel,

channel resource allocation?

4 TDMA strategy, scheduler designs
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Fundamental Limitations

Theorem 3.3.1

There exist coding and controlling strategies {Et(·)}t≥0, {Dt(·)}t≥0, such that
the system can be mean square stabilized over the power constrained fading
channel only if [ln |λ1|, . . . , ln |λd|]′ ∈ Rd satisfies

d∑
i=1

%ioi ln |λi| < −
o
2

lnE

{(
σ2
ω

σ2
ω + γ2

t P

) 1
o
}

(3.5)

for all oi ∈ {0, . . . ,mi}, i = 1, . . . , d and o =
∑d

i=1 %ioi.

+ Proof Sketch

4 Entropy power as lower bound for mean square value: N (X) ≤ E
{
‖X‖2}

4 Stability of entropy power iteration
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Scalar Systems

Theorem 3.4.1

Suppose A = λ1 ∈ R. There exist coding and controlling strategies
{Et(·)}t≥0, {Dt(·)}t≥0, such that the system can be mean square stabilized over
the power constrained fading channel if and only if

ln |λ1| < −
1
2

lnE
{

σ2
ω

σ2
ω + γ2

t P

}
.

4 Revised SK coding scheme [Schalkwijk and Kailath, 1966]: utilize the
noiseless channel feedback to consecutively refine the estimation error

4 Interpretation

State 
Uncertainty

Instability Communication
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Two-dimensional Systems

4 Channel resource allocation, TDMA

4 Chasing and optimal stopping scheduler

time
T1

1 (τ1) T2
1 (τ2,1 > τ1 + 2(T1

1 + T2
1 )

ln |λ1|−ln |λ2|
ln δ )

repeat

Theorem 3.4.2

Suppose n = 2. There exist coding and controlling strategies {Et(·)}t≥0,
{Dt(·)}t≥0, such that the system can be mean square stabilized over the power
constrained fading channel if and only if (3.5) holds.
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High-dimensional Systems
+ TDMA Scheduler

λ1 −→ transmit τ1 times

λ2 −→ transmit τ2 times
...

λn −→ transmit τn times

time
τ1 τ2 . . . τn τ1 τ2 . . . τn

repeat

τk is constant, optimize the relative frequency τi∑n
j=1 τj

Theorem 3.4.3

There exist coding and controlling strategies {Et(·)}t≥0, {Dt(·)}t≥0, such that
the system can be mean square stabilized over the power constrained fading
channel if

d∑
i=1

νi ln |λi| < −
1
2

lnE
{

σ2
ω

σ2
ω + γ2

t P

}
.
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High-dimensional Systems
+ Adaptive TDMA Scheduler - utilize channel fading information

λ1 −→ succeeds τ1 times, T1
k

λ2 −→ succeeds τ2 times, T2
k

...
λn −→ succeeds τn times, Tn

k

time
T1

1 (τ1)T2
1 (τ2) . . . Tn

1 (τn) T1
2 (τ1) T2

2 (τ2) . . . Tn
2 (τn)

repeat

T i
k is stochastic, optimize relative frequency τi∑n

j=1 τj

Theorem 3.4.4

There exist coding and controlling strategies {Et(·)}t≥0, {Dt(·)}t≥0, such that
the system can be mean square stabilized over the power constrained fading
channel if there exist αi, i = 1, . . . , d, with 0 < αi ≤ 1 and

∑d
i=1 αi = 1, such

that for all i = 1, . . . , d

ln |λi| < −
1
2

lnE

{(
σ2
ω

σ2
ω + γ2

t P

)αi
νi

}
.
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Comparisons

4 The adaptive TDMA scheduler achieves a stabilizability region no smaller
than the TDMA scheduler.

4 The adaptive TDMA scheduler is optimal, when all the strictly unstable
eigenvalues are with equal magnitude.

Corollary 3.4.1

Suppose |λ1| = · · · = |λdu | = λ̃ > 1 and |λdu+1| = · · · = |λd| = 1 with
1 ≤ du ≤ d. There exist coding and controlling strategies {Et(·)}t≥0,
{Dt(·)}t≥0, such that the system can be mean square stabilized over the
power constrained fading channel if and only if

ln λ̃ < −1
2

lnE

{(
σ2
ω

σ2
ω + γ2

t P

) 1
ν1+···+νdu

}
.
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An Example

Sufficiency with Adaptive TDMA Scheduler

Necessity and

Sufficiency with Optimal Scheduler

Sufficiency with

TDMA Scheduler

λ1 = λ2

 Necessity and Sufficiency

 with Linear Encoder/Decoder

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ln|λ1|

ln
|λ
2
|
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Gaussian Finite-State Markov Channel

å Mathematical model

⊗ ⊕
ωtγt

rtst

4 Power constraint E
{

s2
t
}
≤ P; additive noise ωt ∼ N (0, σ2

ω)
4 Markov channel fading: {γt}t≥0 is a time-homogeneous Markov pro-

cess; γt ∈ {r1, r2 . . . , rl} and

qij = Pr{γt+1 = rj|γt = ri}.

å An abstraction of the fading channel, represents the time variation of
channel strengths and the correlation among channel conditions
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Power Constrained Markov Lossy Channel

å The channel switches between two states: the state r1 = 0 and the state
r2 = 1, where r1 = 0 indicates the appearance of channel fading and
r2 = 1 means that the channel is free of fading

å The Markov chain has the transition probability matrix

Q =

[
1− q q
p 1− p

]
.

where p represents the failure rate and q denotes the recovery rate.

å The two state Markov chain is illustrated as follows.

0 1

1 − q 1 − p

q p

Figure: Two-state Markov process

25 / 58



Problem Formulation

xt+1 = Axt + But + vt, yt = Cxt + wt

Plant

st = Et(yt, rt−1, γt−1)

Sensor

ut = Dt(rt, γt)

Controller

⊗⊕ γtωt

strt

ut yt

rt−1, γt−1

What is the requirement on channels such that there exist sensing and con-
trolling strategies {Et(·)}t≥0, {Dt(·)}t≥0 that can mean square stabilize the LTI
system?
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Challenges and Methodologies

+ Assumptions

å All the eigenvalues of A are either on or outside the unit circle

å Channel fading knowledge at the receiver side

å Noiseless channel feedback

+ Challenges and Methodologies

1 How to handle output feedback?

4 Introduce observer and estimator
2 How to handle correlated channel fading?

4 Mean square value of system state conditioned on the fading pro-
cess is a Markov jump linear system: stability of MJLSs

4 Markov lossy channels: i.i.d. property of sojourn times
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Stability of Markov Jump Linear Systems

Let ct = 1
2 ln(1 +

γ2
t P
σ2
ω

). Consider the MJLS

zt+1 =
λ2

e
2
o ct

zt + a, (4.5)

where zt ∈ R with z0 <∞; λ ∈ R; o ∈ N+; a ≥ 0.

Lemma 4.2.1

The necessary and sufficient condition for the first moment stability of the sys-
tem (4.5), i.e., limt→∞ E {|z|} = 0, is that

λ2 <
1

ρ(Ho)
,

where Ho = Q′Do with Q = [qij],Do = diag((
σ2
ω

σ2
ω+r2

1P
)

1
o , . . . , (

σ2
ω

σ2
ω+r2

l P
)

1
o ).
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i.i.d. Sojourn Time for Markov Loss

å Successful transmission time sequence {Tk}k≥0

T1 = inf{k : k ≥ 1, γk = 1},
T2 = inf{k : k ≥ T1, γk = 1},

...
...

Tk = inf{k : k ≥ Tk−1, γk = 1}.

å Sojourn time between two successively successful transmissions {T∗k }k>0

T∗k = Tk − Tk−1 > 0.

Lemma 3.5.1 [Xie and Xie, 2009]

The sojourn times {T∗k }k>0 are i.i.d.. Furthermore, the distribution of T∗1 is ex-
plicitly expressed as

Pr(T∗1 = i) =

{
1− p i = 1,
pq(1− q)i−2 i > 1.
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Fundamental Limitations

+ Control over Finite-state Markov Channels

4 Information theoretic argument, stability of MJLS

Theorem 4.3.1

There exist coding and controlling strategies {Et}t≥0, {Dt}t≥0, such that the LTI
system can be mean square stabilized over the Gaussian finite-state Markov
channel only if [ln |λ1|, . . . , ln |λd|] ∈ Rd satisfies(

Πd
i=1|λi|%ioi

) 2
o
<

1
ρ(Ho)

for all oi ∈ {0, . . . ,mi}, i = 1, . . . , d and o =
∑d

i=1 %ioi
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Fundamental Limitations

+ Control over Markov Lossy Channels

4 Explicit characterization of stabilizability in terms of q, p.

Theorem 4.3.2

There exist coding and controlling strategies {Et(·)}t≥0, {Dt(·)}t≥0, such that
the system can be mean square stabilized over the power constrained Markov
lossy channel only if [|λ1|, . . . , |λd|]′ ∈ Rd satisfies

1−

(
d∏

i=1

|λi|%ioi

) 2
o

(1− q) > 0, (4.15)

δ
1
o

(
d∏

i=1

|λi|%ioi

) 2
o

1 +
p(
(∏d

i=1 |λi|%ioi
) 2

o − 1)

1− (1− q)
(∏d

i=1 |λi|%ioi

) 2
o

 < 1, (4.16)

for all oi ∈ {0, . . . ,mi}, i = 1, . . . , d with o =
∑d

i=1 %ioi.
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Stabilization over Finite-state Markov
+ Communication Structure

yt

Observer

x̄t

et = x̄t − x̂t

Encoder
st

Channel
rt

Decoder

êt

Estimator

x̂t

Controller

ut

x̂t

+ Sufficiency with TDMA Scheduler

Theorem 3.4.1

There exist coding and controlling strategies {Et(·)}t≥0, {Dt(·)}t≥0, such that
the LTI system can be mean square stabilized over the Gaussian finite-state
Markov channel, if

Πd
i=1|λi|2νi <

1
ρ(H1)

.

4 The sufficiency is also necessary for scalar systems.
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Stabilization over Markov Lossy Channels

+ Two-dimensional systems

4 Perspective from the randomly sampled time {T∗k }k>0: i.i.d. channel state

4 Chasing and optimal stopping scheduler

Theorem 4.5.2

Suppose n = 2. There exist coding and controlling strategies {Et(·)}t≥0,
{Dt(·)}t≥0, such that the system can be mean square stabilized over the power
constrained Markov lossy channel if and only if (4.15) and (4.16) hold.
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Stabilization over Markov Lossy Channels

+ High-dimensional systems with adaptive TDMA scheduler

Theorem 4.5.2

There exist coding and controlling strategies {Et(·)}t≥0, {Dt(·)}t≥0, such that
the system can be mean square stabilized over the power constrained Markov
lossy channel, if there exist αi, i = 1, . . . , d with 0 < αi ≤ 1 and

∑d
i=1 αi = 1

such that

(1− q)|λ1|2 < 1,

δ
αi
νi |λi|2[1 +

p(|λi|2 − 1)

1− (1− q)|λi|2
] < 1,

for all i = 1, . . . , d.

4 Adaptive TDMA scheduler outperforms TDMA scheduler

4 The sufficient condition is also necessary, when all the strictly unstable
eigenvalues have the same magnitude.

34 / 58



Summary

Channels Necessity Two-dim Sys High-dim Sys

Power constrained
fading channel Thm 3.3.1 Thm 3.4.2 Thm 3.4.3

Thm 3.4.4

Gaussian finite-state
Markov channel

Thm 4.3.1 Thm 4.4.1

Power constrained
Markov lossy channel

Thm 4.3.2 Thm 4.5.1 Thm 4.5.2

+ Consistency

Gaussian-finite state Markov⇒ Markov lossy⇒ Power constrained fading
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Recovery of Existing Results

4 AWGN channels, i.e., γt ≡ 1

d∑
i=1

νi ln |λi| <
1
2

ln(1 +
P
σ2
ω

)

degenerates to the result in [Braslavsky et al., 2007, Freudenberg et al., 2010]

4 Real erasure channels, i.e., γt ∼ Bernoulli(ε), σ2
ω → 0,P → ∞

λ2
1 <

1
ε

degenerates to the result in [Elia, 2005, Gupta et al., 2007]

4 Markovian packet loss channel, i.e., {γt} Markov lossy process, P → ∞,
σ2
ω → 0

(1− q)|λ1|2 < 1

degenerates to the result in [Xie and Xie, 2009, Gupta et al., 2007]
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Problem Formulation

+ Single input LTI agent dynamics

xi(t + 1) = Axi(t) + Bui(t),

yi(t) = Cxi(t),
i = 1, 2, . . . ,N, (5.1)

+ Consensus protocol

qi(t + 1) = (A + BK) qi(t) + F
∑
j∈Ni

[γij(t) (Cqi(t)− yi(t))− rij(t)] ,

ui(t) = Kqi(t)
(5.2)

with rij(t) = γij(t)(Cqj(t)− yj(t)) + ωij(t).

+ Mean square consensus
The MAS (5.1) is mean square consensusable by (5.2), if there exist F
and K, such that limt→∞ E{‖xi(t)− xj(t)‖2} ≤ m for some m and any i, j.

+ Problem: When is the MAS mean square consensusable?
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Challenges and Methodologies

+ Assumptions

å All the eigenvalues of A are either on or outside the unit circle

å Channel fading knowledge at the receiver side

+ Challenges and Methodologies

1 How to handle identical fading with undirected graphs?

4 Decomposition method, simultaneous stabilization
2 How to handle nonidentical fading with undirected graphs?

4 Use edge Laplacian to model the consensus error dynamics
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Identical Fading Networks

Assumption 5.3.1

The channel fading is identical and i.i.d., i.e., γij(t) = γ(t) for all t ≥ 0, i, j =
1, 2, . . . ,N, and the sequence {γ(t)} is i.i.d. with mean µ and variance σ2.

4 Consensus error dynamics

δ(t + 1) = (IN ⊗A+ γ(t)L ⊗H) δ(t)

where δ = ε− 1
N ((11′)⊗ I2n)ε with ε = [x1

′, q1
′, . . . , xN

′, qN
′]′.

4 Unitary diagonalization, Θ′LΘ = diag(0, λ2, λ3, . . . , λN) with 0 < λ2 ≤
λ3 ≤ · · · ≤ λN ; Simultaneous stabilization

gi(t + 1) = (Ā+ λiγ(t)H̄)gi(t) i = 2, 3, . . . ,N.

Theorem 5.3.1

The MAS (5.1) is mean square consensusable by (5.2) if and only if the undi-
rected graph is connected and

µ2

µ2 + σ2 ×

[
1−

(
λN − λ2

λN + λ2

)2
]
> 1− 1

Πi|λi(A)|2 .
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Nonidentcal Fading Networks

+ Consensus protocol

uj(t) = K
∑

k∈Nj
(γjk(t)xj(t)− rjk(t)) , (5.17)

where rjk = γjk(t)xk(t) + ωjk(t).

+ Node consensus error dynamics

δ(t + 1) = (IN ⊗ A + L(t)⊗ BK) δ(t)

with [L(t)]ii =
∑

j∈Ni
[L]ijγij(t), [L(t)]ij = [L]ijγij(t) for i 6= j.

+ Edge consensus error dynamics

z(t + 1) = (IN−1 ⊗ A + Leζ(t)⊗ BK) z(t)

4 The state on the i-th edge as zi = xj − xk, with j, k being the initial
agent and the terminal agent of the i-th edge, respectively.

4 The fading on the same edge is equal, i.e., γjk = γkj = ζi

4 ζ = diag(ζ1, ζ2, . . . , ζN−1), ζk denotes the i.i.d. fading effect on the
k-th edge with mean µk and variance σ2

k .
4 Le = E(G)′E(G), L = E(G)E(G)′
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Nonidentical Fading Networks

Theorem 5.4.1

the MAS (5.1) is mean square consensusable by (5.17) under an undirected
tree topology if

min
κ

κ (LeΛ + ΛLe) + κ2(ΛL2
eΛ + Σ� L2

e) < −(1− 1
Πi|λi(A)|2 )I,

where Σ = [σij](N−1)×(N−1), σij = E{(ζi − µi)(ζj − µj)} for i 6= j, σii = σ2
i ,

Λ = diag(µ1, µ2, . . . , µN−1).

+ A. When Λ = µI

µ2

µ2 + ρ(Σ)
× λ2

2

λ2
N
> 1− 1

Πi|λi(A)|2 (5.22)

+ B. When Λ 6= µI and 2 max
i
|µi − 1

2 | <
λ2
λN

1
max

i
µ2

i + ρ(Σ)
× λ̂2

2

4λ2
N
> 1− 1

Πi|λi(A)|2 (5.24)

where λ̂2 is the smallest positive eigenvalue of ΛLe + LeΛ.
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Problem Formulation

+ Single input LTI dynamics

xi(t + 1) = Axi(t) + Bui(t), i = 1, 2, . . . ,N, (6.1)

+ Consensus protocol

ui(t) = K
∑
j∈Ni

(γij(t)xi(t)− rij(t)) (6.2)

The information that the i-th agent received from the j-th agent

rij(t) = γij(t)xj(t) + wij(t)

+ Mean square consensus
The MAS (6.1) is mean square consensusable by (6.2), if there exists K,
such that limt→∞ E{‖xi(t)− xj(t)‖2

2} ≤ m for some m and any i, j.

+ Problem: When is the MAS mean square consensusable?
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Challenges and Methodologies

+ Assumptions

å All the eigenvalues of A are either on or outside the unit circle

å Channel fading knowledge at the receiver side

+ Challenges and Methodologies

1 How to handle identical fading with directed graphs?

4 Decomposition method, simultaneous stabilization
2 How to handle nonidentical fading with directed graphs?

4 Define compressed in-incidence matrix, compressed incidence ma-
trix and compressed edge Laplacian for directed graphs

4 Use compressed edge Laplacian to model the consensus error dy-
namics
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Identical Fading Networks

Assumption 6.3.1

The channel fading on different edges is identical, i.e., γij(t) = γ(t) for all t ≥ 0
with (j, i) ∈ E , and the sequence {γ(t)} is i.i.d. with mean µ and variance σ2.

4 Consensus error dynamics

δ(t + 1) = (I ⊗ A + γ(t)L ⊗ BK)δ(t),

where δ = X − ((1r′)⊗ I)X, with X = [x′1, x2,
′ . . . , x′N ]′ and r′ being the left

eigenvector of L associated with the zero eigenvalue, satisfying r′1 = 1.

Theorem 6.3.1

When the fading network is identical, the MAS (6.1) is mean square consen-
susable by (6.2), if the directed graph contains a directed spanning tree and

µ2

µ2 + σ2 (1−min
κ∈R

max
i=2,...,N

|κλi + 1|2) > 1− 1
Πi|λi(A)|2 .

4 The sufficiency is also necessary when agents are with scalar dynamics.
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Nonidentical Fading Networks
+ Compressed In-incidence (Incidence) Matrix
The CIIM Ē and CIM E are N ×F matrices with rows and columns indexed by
nodes and edges of G respectively, such that

4 If the edge ep connecting two nodes i, j is bidirectional and the orientated
edge is with initial node j and terminal node i, then
(a) [Ē]lp = 1 for l = j, [Ē]lp = −1 for l = i, and [Ē]lp = 0 otherwise.
(b) [E]lp = 1 for l = j, [E]lp = −1 for l = i, and [E]lp = 0 otherwise.

4 If the edge ep is a directed edge, and is with initial node j and terminal
node i, then
(a) [Ē]lp = −1 for l = i and [Ē]lp = 0 otherwise.
(b) [E]lp = 1 for l = j, [E]lp = −1 for l = i, and [E]lp = 0 otherwise.

1

2 3

1

2 3

e1 e2

Ē =


e1 e2

1 1 0
2 −1 0
3 0 −1

, E =


e1 e2

1 1 1
2 −1 0
3 0 −1

.
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Compressed Edge Laplacian

+ Definition

Definition 6.4.2

The CEL of G is defined as Le = E′Ē.

+ Properties

Proposition 6.4.2

The graph Laplacian L has the following expression L = ĒE′.

Proposition 6.4.3

The CEL Le and the graph Laplacian L share the same nonzero eigen-
values. The zero eigenvalue, if exists, is a semi-simple eigenvalue.
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Edge Consensus Error Dynamics

4 Edge consensus error dynamics

z(t + 1) = (I ⊗ A + Leζ(t)⊗ BK)z(t)

4 Dimension reduction

1

2 3

e1

e2

e3

e1 : z1 = x1 − x2

e2 : z2 = x2 − x3

e3 : z3 = x3 − x1

z1 + z2 + z3 = 0

Proposition 6.5.1

If G contains a directed spanning tree, then zc = (S′ ⊗ I)zτ , where zτ
is the edge state on the directed spanning tree and zc is the remaining
edge state.

4 Essential edge consensus error dynamics

zτ (t + 1) = (I ⊗ A + Mζ(t)R′ ⊗ BK)zτ (t),

where M = E′τ Ē, R = [I, S].
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Consensusability Condition

Theorem 6.5.1

The MAS (6.1) is mean square consensusable by the protocol (6.2) under a
directed communication topology if there exists k ∈ R, such that

k
(
MΛR′ + RΛM′

)
+ k2R(W � ΛM′MΛ)R′ < −(1− 1

Πi|λi(A)|2 )I,

where W = 11′ + Λ−1ΣΛ−1.

+ A. When Λ = µI

µ2

µ2 + maxi σ2
i
×
λ2

min(
MR′+RM′

2 )

ρ(RR′)ρ(M′M)
> 1− 1

Πi|λi(A)|2

+ B. When Λ 6= µI and MΛR′ + RΛM′ > 0

λ2
min(

MΛR′+RΛM′

2 )

maxi(1 +
σ2

i
µ2

i
)ρ(RR′)ρ(ΛM′MΛ)

> 1− 1
Πi|λi(A)|2
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Performance Analysis

the effect of the network topology on the mean square consensusability is
reflected

α :=
λ2

min(
MR′+RM′

2 )

ρ(RR′)ρ(M′M)
.

Proposition 5.5.2

If G contains a directed spanning tree and MR′ + RM′ > 0, then 0 < α ≤ 1.

1

2 3 . . . N

e1 e2 eN−1

1

2 3 . . . N

e1 e2 eN−1

eN

star graph: α = 1 Star graph with an edge: α = (3−
√

2)2

24 < 1

1 2 3 . . . N
e1 e2 eN−1

path graph: (1−cos πN )2

2−2 cos (N−1)π
N

≤ α ≤ (1−cos πN )2

1−2 cos (N−1)π
N

, limN→∞ α = 0
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Summary

Scenarios Consensus Condition
undirected graphs, identical fading Thm 5.3.1, Thm 5.3.2
undirected graphs, nonidentical fading Thm 5.4.1, Cor 5.4.1, Cor 5.4.2
directed graphs, identical fading Thm 6.3.1, Thm 6.3.2, Thm 6.3.3
directed graphs, nonidentical fading Thm 6.5.1, Cor 6.5.1, Cor 6.5.2

+ Consistency

directed graphs⇒ undirected graphs; nonidentical fading⇒ identical fading
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Recovery of Existing Results

4 For single agent, i.e., λ2 = λN , control over multiplicative noise

Πi|λi(A)|2 < µ2

σ2 + 1

degenerates to the result in [Elia, 2005]

4 Perfect communication, i.e., σ2 = 0, µ = 1, undirected graph

Πi|λi(A)| < λN + λ2

λN − λ2

degenerates to the result in [You and Xie, 2011b]

4 Perfect communication, i.e., σ2 = 0, µ = 1, directed graph

min
κ∈R

max
i
|κλi + 1|2 < 1

Πi|λi(A)|2

degenerates to the result in [You and Xie, 2011b]
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Outline

1 Motivation and Research Objective

2 Literature Review

3 Networked Control over Fading Channels
Stabilization over Power Constrained Fading Channels
Stabilization over Gaussian Finite-state Markov Channels

4 Distributed Consensus over Fading Networks
Consensus over Undirected Fading Networks
Consensus over Directed Fading Networks

5 Conclusions and Future Work
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Conclusions

We studied how channel fading affects the stability of control systems. The
following conclusions can be made:

å Networked control over fading channels

4 Sufficient and necessary conditions for mean square stabilizabil-
ity over power constrained fading channels, Gaussian finite-state
Markov channels (Markov lossy channels)

Takehome messages: Power constrained fading channels, stabilizability
determined by the fading statistics and the SNR ratio; Gaussian finite-
state Markov channels, stabilizability determined by the Markov transition
probability and the finite-level channel fading.

å Distributed consensus over fading networks

4 Sufficient and necessary conditions for mean square consensus
over undirected/directed fading networks

Takehome messages: The consensusability is closely related to the statis-
tics of the fading networks, the eigenratio of the graph, and the instability
degree of the dynamical system.
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Future Work

å Networked control over fading channels

4 Optimal channel resource allocations for high-dimensional systems?
4 Vector communication channels?

å Distributed consensus over fading networks

4 Necessary consensus conditions for general systems?
4 Relax consensus conditions with nonlinear consensus protocols?

å Other interesting problems

4 Joint effects with time-delay, interference?
4 LQG performance vs. channel capacity?
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