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Abstract

Classical control theory assumes that the communication links connecting plants,

sensors and controllers are perfect. However, this is not true in practical applica-

tions. The imperfection of communication channels would introduce uncertainties

into feedback control systems, which might impact the stability and performance of

the corresponding control system. Different issues arise when different communica-

tion channels are used in control systems, such as the minimal data rate, tolerable

time delay and minimal signal-to-noise ratio (SNR), etc. This thesis focuses on

the fading phenomenon in wireless communications and studies how channel fading

affects the stability of feedback control systems.

In the first part of this thesis, we consider the mean square stabilizability problem

of discrete-time linear time-invariant (LTI) systems controlled over fading chan-

nels. Firstly, we consider the power constrained fading channel, which suffers from

both SNR constraints and the time-varying independent and identically distributed

(i.i.d.) channel fading. We try to characterize channel requirements for the existence

of coding and controlling policies that can mean square stabilize the linear system.

We show that there is a fundamental limitation on the mean square stabilizability.

For scalar systems and two-dimensional systems, necessary and sufficient conditions

for the mean square stabilizability are provided. Moreover, time division multiple

access (TDMA) and adaptive TDMA communication schemes are designed for high-

dimensional systems, which are proved to be optimal under certain situations. Then

we proceed to study the mean square stabilizability problem over Gaussian finite-

state Markov channels, which suffer from both SNR constraints and the correlated
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channel fading modeled by a Markov chain. Similarly, the existence of a funda-

mental limitation for mean square stabilizability is proved. Sufficient stabilization

conditions under TDMA communication schemes are derived in terms of the sta-

bility of a Markov jump linear system (MJLS). Besides, for networked control over

power constrained Markov lossy channels, one special kind of Gaussian finite-state

Markov channels, we present a necessary and sufficient condition for the mean square

stabilizability of two-dimensional systems. Moreover, improved sufficient stabiliz-

ability conditions are derived based on an adaptive TDMA communication scheme

for general high-dimensional systems.

In the second part of this thesis, we study the consensusability problem of linear

discrete-time multi-agent systems (MASs) over fading networks with both undi-

rected and directed communication topologies. The agents in the MAS communicate

with their neighborhoods through fading channels. We aim to characterize require-

ments on the agent dynamics, channel capacities and the network topology for the

existence of a distributed consensus controller. First of all, we study the consensus

problem under an undirected graph setting. Sufficient conditions to guarantee mean

square consensus are derived with both identical fading networks and non-identical

fading networks. The results imply that the consensusability is closely related to the

statistics of fading networks, the eigenratio of the graph, and the instability degree

of the dynamical system. Then, we consider the mean square consensus problem

over fading networks with directed graphs. Sufficient conditions are firstly pro-

vided for mean square consensus over identical fading networks. For consensus over

non-identical fading networks with directed graphs, compressed in-incidence matrix

(CIIM), compressed incidence matrix (CIM) and compressed edge Laplacian (CEL)

are proposed to facilitate the modeling and consensus analysis. It is shown that the

mean square consensusability is solely determined by the edge state dynamics on

a directed spanning tree. As a result, sufficient conditions are provided for mean

square consensus over non-identical fading networks with directed graphs in terms

of fading parameters, the network topology and the agent dynamics. Moreover, the

role of network topology on the mean square consensusability is discussed.
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Chapter 1

Introduction

1.1 Motivation and Objective

Communication Channels

Plant SensorController

Limited capacity

Packet lossQuantization

Random delay

Figure 1.1: Networked control systems

Due to the flexible architecture and ease of installation and maintenance, commu-

nication networks are widely used in control systems, which result in networked

control systems. Networked control systems are ubiquitous in industry and daily

life, such as teleoperation [1], power systems [2] and transportation systems [3].

In networked control systems, wired or wireless communication channels are used

to link components among plants, sensors and controllers to achieve control objec-

tives. While there are many advantages, networked control systems also introduce
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2 1.1. MOTIVATION AND OBJECTIVE

new interesting and challenging problems arising from the limited resources and

unreliability of the communication networks used for information transmission (see

Figure 1.1). For example, due to congestion, data losses and transmission delays

may occur in digital communication channels. Besides, in wireless communication

networks, which are widely used in sensor networks and multi-agent systems, com-

munication channels naturally suffer from inference, fading and transmission noises.

Since control is often used in safety- or mission-critical applications, we must take

the uncertainties in communication networks into consideration and investigate how

they affect the stability of control systems.

Traditionally, point-to-point communication is studied under a non-interactive as-

sumption [4]. The emerging of communication networks and the existence of feed-

back in communication channels require to study the interactive communication [5].

Networked control systems provide excellent examples in understanding interactive

communications [6,7]. A better understanding of the role that communication plays

in networked control systems may not only enable us to achieve better control per-

formances, but also allow to boost the development of communication theory, see

results [8–10].

Figure 1.2: Fading phenomenon in wireless communications

Fading is the time variation of channel strengths, which appears in wireless com-

munications in urban, indoor, and underwater environments [11–13]. Usually the

channel fading is caused by two factors: one is the shadowing from obstacles; the
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1.1. MOTIVATION AND OBJECTIVE 3

other one is the multi-path propagation [12,13]. Take Figure 1.2 as an example. The

wireless signal may transmit through the car. As a result, the signal strength at the

receiver side might be reduced due to the shadowing effect. Besides, the wireless sig-

nal might also undergo through several paths before arriving at the receiver. If the

phases of the received signals from different paths are the same, the signal strength

is enhanced. Otherwise, the signal strength is reduced as a result of cancellation of

radio waves.

st ⊗ ⊕ rt

γt wt

Figure 1.3: Fading channel model

The fading channel is usually modeled as follows [11] (see Figure 1.3)

rt = γtst + ωt, (1.1)

where st denotes the channel input satisfying an average power constraint, i.e.,

E {s2
t} ≤ P ; rt represents the channel output; γt is the channel fading which repre-

sents the time-variation of received signal power (also known as the channel state)

and ωt is an additive white Gaussian noise (AWGN) with zero-mean and bounded

variance σ2
ω. Depending on the particular propagation environment and communi-

cation scenario, different statistical models can be used for the channel fading γt

(e.g., Rayleigh, Nakagami, Rician) [13].

The stability issues of control over point-to-point communication channels have

been extensively studied over the past few years (e.g., see Chapter 2). However,

existing results only deal with simple communication models, such as finite data

rate channels, AWGN channels, etc. For more complex communication models,

such as fading channels, there are only a few results. It is still unclear how the

channel fading and the communication networks affect networked control systems.

In this thesis, we shall study two issues relating to networked control over fading

Nanyang Technological University Singapore



4 1.2. MAJOR CONTRIBUTIONS OF THE THESIS

channels. One is stabilization over fading channels, which would show the role that

the uncertain channel plays in networked control systems. The other one is the

distributed consensus problem over fading networks, which is a simple example to

investigate how the fading networks affect the stability of multi-agent systems.

1.2 Major Contributions of the Thesis

The main contributions of the thesis are as follows:

• Control over power constrained fading channels. Firstly, information theoretic

analysis is conducted for networked control systems, which reveals fundamen-

tal limitations imposed by the power constrained fading channel on stabiliz-

ing unstable linear time-invariant (LTI) systems. Secondly, a communication

protocol with proper encoder/decoder/scheduler for two-dimensional systems

with unstable eigenvalues having different magnitudes is proposed, which pro-

vides an optimal allocation of channel resources to each sub-system. Finally,

time division multiple access (TDMA) and adaptive TDMA communication

schemes are proposed for general high-dimensional systems, and their achiev-

able stabilizability region is analyzed.

• Control over Gaussian finite-state Markov channels. Firstly, necessary condi-

tions for the mean square stabilization over Gaussian finite-state Markov chan-

nels are derived. Secondly, sufficient stabilization conditions under TDMA

communication schemes are proposed. Thirdly, for power constrained Markov

lossy channels, a necessary and sufficient stabilization condition is presented

for two-dimensional systems, and improved sufficient stabilization conditions

for general high-dimensional systems with adaptive TDMA protocols are de-

rived, which achieve a larger stabilizability region than the TDMA communi-

cation scheme.
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1.3. ORGANIZATION OF THE THESIS 5

• Distributed consensus over undirected fading networks. Sufficient conditions

to ensure mean square consensus of discrete-time linear multi-agent systems

(MASs) over analog fading networks are derived for the scenarios of undirected

communication topologies with identical fading networks and undirected com-

munication topologies with non-identical fading networks, respectively. For

scalar systems, the sufficient condition is shown to be necessary. It is shown

that the effect of fading networks on consensusability is determined by the

statistics of channel fadings and the eigenratio of the communication topol-

ogy.

• Distributed consensus over directed fading networks. Firstly, for the consen-

sus problem over identical fading networks, we provide a sufficient consensus-

ability condition in terms of complex eigenvalues of the graph Laplacian and

show that the sufficient condition is necessary when agents are with scalar

dynamics. Secondly, by defining edge states and modeling the consensus error

dynamics using compressed in-incidence matrix (CIIM), compressed incidence

matrix (CIM) and compressed edge Laplacian (CEL), we show that the mean

square consensusability is determined by edge state dynamics on a directed

spanning tree. Thirdly, sufficient conditions are provided for consensus over

non-identical fading networks with directed graphs and the role of the network

topology on the mean square consensusability is discussed.

1.3 Organization of the Thesis

This thesis is organized as follows. Chapter 1 briefly summarizes the motivation, the

objective of research and the contributions of this thesis. Chapter 2 is the literature

review of related research topics. Chapter 3 discusses the mean square stabiliza-

tion problem over power constrained fading channels. Chapter 4 studies the mean

square stabilization problem over Gaussian finite state Markov channels. Chapter 5

and Chapter 6 investigate the distributed consensus problem over undirected fad-
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6 1.3. ORGANIZATION OF THE THESIS

ing networks and directed fading networks, respectively. In Chapter 7, we provide

conclusions and remarks about future work.
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Chapter 2

Literature Review

Control over communication channels/networks has been a hot research topic in

the past decades [14–16], motivated by the rapid developments of wireless com-

munication technologies that enable the wide connection of geographically dis-

tributed devices and systems. However, the inclusion of wireless communication

channels/networks also introduces challenges in the analysis and design of control

systems due to constraints and uncertainties in wireless communications. We must

take the communication channels/networks into consideration and study their im-

pact on the stability and performance of control systems. This section briefly reviews

existing results on control over communication research.

2.1 Basics of Communication Theory

The focus of this thesis is to characterize the critical channel requirement such that

the feedback control system can be mean square stabilized. Since the communica-

tion channel is used to transmit information about the system state as illustrated

in Figure 1.1, it is expected that if the channel capacity is large enough, the feed-

back connected system can be mean square stabilized. From this perspective, the

communication channel capacity might be critical for the mean square stabilization

of control systems.

Nanyang Technological University Singapore



8 2.1. BASICS OF COMMUNICATION THEORY

W
Encoder

Xn

Channel p(y|x)
Y n

Decoder
Ŵ

Figure 2.1: Point to point communication system

The channel capacity problem is fundamental in communication theory, since it dic-

tates the maximum data rates that can be transmitted over channels with asymp-

totically small error probability [12, 13]. In this subsection, we briefly review the

communication channel capacity definitions, and discuss why the communication

theoretic channel capacity is not the critical characterization of the capacity re-

quired for controls. We only discuss discrete memoryless channels and most of the

definitions are borrowed from [4].

A discrete memoryless channel consists of three parts: an input alphabet X , an out-

put alphabet Y and a probability transition matrix p(y|x) that describes the prob-

ability of observing the output symbol y given the input symbol x. The channel is

memoryless if the probability distribution of the current channel output conditioned

on the current channel input is independent of previous channel inputs or outputs.

The configuration of the point to point communication system is depicted in Fig-

ure 2.1. We want to transmit a message W reliably through the communication

channel with appropriately designed channel encoders and decoders. The (M,n)

code in a communication system is defined as follows.

Definition 2.1.1 ((M,n) code). An (M,n) code for the channel (X , p(y|x),Y) con-

sists of three parts:

1. A message index set {1, 2, . . . ,M}.

2. An encoding function Xn : {1, 2, . . . ,M} → X n, generating codewords xn(1),

xn(2), . . ., xn(M).

3. A decoding function g : Yn → {1, 2, . . . ,M}, generating an estimate for the

transmitted message index.

The performance of the code is measured by the decoding error.
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Definition 2.1.2 (Decoding error). The maximal probability of error for an (M,n)

code is defined as λ(n) = maxi∈{1,2,...,M}Pr(g(Y n) 6= i|Xn = xn(i)).

The communication channel capacity which measures the maximal capacity for re-

liably transmitting the information is defined below.

Definition 2.1.3 (Channel capacity). The rate R of the (M,n) code is defined as

R =
logM

n
bits per transmission.

A rate R is achievable if there exists a sequence of (d2nRe, n) codes such that λ(n)

tends to 0 as n → ∞. The channel capacity C is then defined as the supremum of

all achievable rates.

The channel capacity in Definition 2.1.3 is called the Shannon channel capacity, since

C. E. Shannon proved in the channel coding theorem that this channel capacity

equals the mutual information of the channel maximized over all possible input

distributions [4, 17]:

C = max
p(x)

I (X;Y ),

where the mutual information I (X;Y ) is defined as

I (X;Y ) =
∑

x∈X ,y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
.

The Shannon capacity of fading channels has been studied under various scenarios

in [11,18–21]. For example, it is proved in [11] that if the channel state information

is available at the receiver side, the Shannon channel capacity of a fading channel is

C =

∫ ∞
0

1

2
log(1 +

γ2P
σ2
ω

)p(γ)dγ,

where p(γ) is the probability distribution function of the channel fading γ.
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The Shannon channel capacity in Definition 2.1.3 assumes that the capacity achiev-

ing code can be sufficiently long, which would inevitably result in a large delay.

Since delay is critical in control systems, we may expect that the communication

theoretic Shannon channel capacity is not the right choice for controls. This has

been confirmed in [7], where the authors define another kind of channel capacity,

named the anytime capacity, and show that the anytime capacity should be the

critical characterization of channel capacities for controls when moment stability is

concerned. However, there is no systemic method to calculate the anytime capac-

ity. In the following, we will briefly review existing results to show requirements on

communication channels for the stabilization of networked control systems.

2.2 Control over Communication Channels

2.2.1 Control over Noiseless Digital Channels

For control systems with components connected through noiseless digital commu-

nication channels, the celebrated data rate theorem [22] is an important result in

the past decades. The data rate theorem states that to keep the state of a scalar

unstable discrete-time linear system

xt+1 = λxt + ut + wt (2.1)

mean square bounded, the data rate R for the digital communication channel that

connects the sensor to the controller should satisfy that

R > log |λ|. (2.2)

Intuitively, this result has the following explanation, see Figure 2.2. The controller

wants to compensate for the expansion of uncertainties in the state estimation during

the communication process. To ensure the boundness of the system state, λ2/22R

should be smaller than one, which gives the data rate theorem.
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state variance
instability R-bit message

|ƛ|2 2-2R

Figure 2.2: Intuitive explanations of the data rate theorem

The result in (2.2) resembles the Shannon’s source channel coding theorem [4], with

the left hand side being the Shannon channel capacity and the right hand side

the source’s uncertainty measure. Indeed, the right hand side of (2.2) denotes the

information generating speed of the LTI system [8, 23], which is generating infor-

mation about the unknown initial system state. This resemblance also motivated

researchers to study control systems from the perspective of information theory, e.g.,

see [24–34].

2.2.2 Control over Stochastic Digital Channels

For noisy channels, the stability problem is more complex. For moment stability, [7]

shows that the Shannon capacity is too optimistic while the zero-error capacity is too

pessimistic, and the anytime capacity is introduced to characterize the stabilizability

conditions. Essentially, to keep the η-moment of the state of an unstable scalar plant

bounded, it is necessary and sufficient for the feedback channel’s anytime capacity

corresponding to anytime-reliability α = ηlog|λ| to be greater than log|λ|, where λ

is the unstable eigenvalue of the plant. The anytime capacity has a more stringent

reliability requirement than the Shannon capacity. However, it is worthy noting that

there exists no systematic method to calculate the anytime capacities of channels. In

control community, the anytime capacity is usually studied under the mean square

stability requirement, and is named as the mean square capacity. In the following,

we survey related results that aim to determine requirements on noisy channels to

ensure that the feedback connected linear systems can be mean square stabilized,
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which, one the other hand, reveals the mean square capacities for the channels

studied.

One important kind of communication channels is the time-varying digital channel.

Reference [35] assumes that the data rate Rt of the time-varying digital channel

under consideration is stochastic and independent and identically distributed (i.i.d.),

and gives the mean square stabilizability condition for a connected discrete-time

LTI system. The authors show that for scalar systems, to ensure the mean square

stabilizability, the following condition should be satisfied

E{ λ
2

22Rt
} < 1. (2.3)

Similar to the explanation of data rate theorem for noiseless channels, (2.3) intu-

itively implies that to ensure mean square stabilizability, it is necessary and suffi-

cient for the average expanding factor of the system state during one iteration to

be smaller than one. For vector systems, necessary and sufficient conditions are

provided in the form of stability regions or characterized by rate vectors [35].

For a stochastic rate limited channel, [36] further shows that the minimum data

rate for the stabilization of a single-input vector system is explicitly given in terms

of unstable eigenvalues of the open-loop matrix and the packet dropout rate, which

clearly reveals the amount of the additional bit rate required to counter the effect

of packet dropouts on stabilization. Sufficient data rate conditions for mean square

stabilization of multiple-input vector systems are also derived there. When the

packet drop is correlated over time, the problem becomes much more complicated.

Reference [37] studies mean square stabilization of linear systems over networks with

Markovian packet drops. Since the sojourn time of the time-homogeneous Marko-

vian process that models the two-state packet drop process is i.i.d. [38], a randomly

sampled system approach is developed in [37] to derive the mean square stabiliz-

ability condition. The same method is also adopted when deriving the data rate

theorem with the additional consideration of system uncertainties in [39]. Borrow-

ing results from Markov jump linear systems, the mean square stabilizability results
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for a more general n-state Markovian packet drop process are given in [40], which

contains the two-state Markovian packet drop process as a special case. The existing

results in [35–37, 40] are both necessary and sufficient for scalar systems. However,

for vector systems, generally there exists a gap between the derived sufficient condi-

tions and necessary conditions. The main difficulty for deriving conditions that are

both necessary and sufficient is how to optimally allocate the bits to each unstable

sub-system.

2.2.3 Control over Real Erasure Channels

Another kind of time-varying digital channels is the real erasure channel. For such

a channel, during every successful transmission, the channel capacity is infinity.

Reference [41] considers the stability problem of Kalman filtering over a real erasure

channel. The authors show that there exists a critical packet drop probability,

above which the estimation error covariance matrix diverges and below which the

estimation error covariance matrix converges to a constant matrix. The critical

packet drop probability is related to the unstable eigenvalues of the system matrix.

Later, extensions to the study of the tail distribution and the weak convergence

to a stationary distribution on the estimation error covariance matrix are provided

in [42–44].

This problem can be easily extended to stabilization and control of LTI systems

closed over an intermittent channel between the controller and the actuator. Ref-

erence [45] studies the linear quadratic Gaussian (LQG) control problem with the

actuator and controller connected through a real erasure channel. It is shown that

for transmission control protocol (TCP) like channels, i.e., there exists an acknowl-

edgment about the packet drop event, the optimal LQG controller is a linear function

of the estimated state. While for the user datagram protocol (UDP) like channels,

the optimal LQG controller is in general nonlinear. The critical packet drop prob-

ability to ensure mean square stabilization of LTI systems closed over intermittent

channels is given in [46] under an i.i.d. packet drop assumption and in [47] under a
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Markovian packet drop assumption. Here, it should be noted that the critical packet

drop probability for intermittent channels can also be obtained from stochastic rate

channels by letting the instantaneous channel capacity be infinity within one suc-

cessful transmission. The results thus obtained in [35] can recover the results in [46]

and the results obtained in [40] imply the results in [47].

2.2.4 Control over Analog Channels

The above results focus on digital channels. As to analog channels, [48] consid-

ers the mean square stabilization problem over a pure multiplicative noise channel,

and derives the mean square capacity of such channels. Since the i.i.d. packet

drop channel is one special kind of pure multiplicative noise channels, the results

obtained in [48] can be easily used to derive the results for i.i.d. packet drop chan-

nels. Reference [49] further derives sufficient conditions and necessary conditions for

mean square stabilization of multiple-input multiple-output systems controlled over

parallel multiplicative noise channels. Reference [50] proposes a channel-controller

co-design approach with channel resource allocations to stabilize LTI systems con-

trolled with imperfect input channels when the total input channel capacity is fixed.

When the sub-channel capacities are fixed a priori, [51] derives the stabilizabiity

condition with a majorization approach. The joint effect of the quantization and

multiplicative noise, the time-delay and multiplicative noise on the mean square

stabilizability are studied in [52] and [53–55], respectively. Reference [56] consid-

ers LQG-like control of scalar systems over communication channels suffering from

data losses, delays and SNR limitations. The authors show that the stability of the

closed-loop system depends on a tradeoff among the SNR constraint, packet loss

probability and time-delay.

The LQG control of LTI systems with random input gains is studied in [57, 58]

under the framework of channel/controller co-design. It is shown that the optimal

control problem is feasible if and only if the system is mean-square stabilizable and

detectable. Reference [59] further studies the finite-horizon and infinite horizon
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stochastic optimal control problems for systems with both multiplicative noise and

input delay. A necessary and sufficient condition for the optimal control is obtained.

Reference [60] considers the problem of linear encoding and decoding designs for

optimal feedback control of a stochastic scalar system when the sensed signal is

to be transmitted over a finite capacity communication channel, which is subject

to SNR constraints and packet losses. The optimal strategy when perfect channel

feedback is available is characterized.

Reference [61] studies the mean square stabilization problem over an AWGN channel

and characterizes the critical capacity to ensure mean square stabilizability. The

authors show that to ensure the mean square stabilization of a networked scalar

system, the channel parameters should satisfy the following relation

log |λ| < 1

2
log(1 +

P
σ2
ω

) (2.4)

with P/σ2
ω denoting the signal-to-noise ratio (SNR) of the AWGN channel. They

also show that for the output feedback case, the capacity required for the AWGN

channel is generally larger than that of the state feedback case, unless the plant is

minimum phase. They further show that the extension from linear encoders/decoders

to more general causal encoders/decoders cannot provide additional benefits of in-

creasing the channel capacity [62].

Specifically, the results stated above deal with multiplicative noise channels or

AWGN channels separately. While in wireless communications, it is practical to

consider them as a whole. Reference [63] has derived the necessary and sufficient

condition for such kind of channels to ensure the mean square stabilizability under

a linear encoder/decoder. It is still unknown whether we can achieve a larger stabi-

lizability region with a more general causal encoder/decoder. We provide a positive

answer to this question in Chapter 3 and Chapter 4. For scalar systems, the prob-

lem lies in how to design encoders/decoders to render the closed-loop system mean

square stable. For AWGN channels, [64] proposes encoder/decoder designs based on

the Schalkwijk coding scheme [65], which utilizes the noiseless channel feedback to
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consecutively refine the estimation error. It is shown that such encoding/decoding

schemes can stabilize scalar unstable systems with the minimal channel capacity re-

quirement indicated in [62]. In Chapter 3, we show that a modification of this coding

scheme can stabilize scalar systems controlled over power constrained fading chan-

nels, which suffer from channel fading and SNR constraints. For vector systems,

the difficulty is how to optimally allocate channel resources among sub-systems.

When the channel is only with Gaussian noise, [64] employs a time-invariant allo-

cation with the TDMA strategy to solve this problem. The transmission through

the channel is scheduled periodically. During every period, each sub-system is al-

located a fixed portion of transmission slots proportional to the logarithm of the

magnitude of the corresponding unstable eigenvalue. It is shown that such alloca-

tion together with proper encoder/decoder pairs can stabilize the vector system.

Moreover, from the results in [62], we know that such TDMA strategy is optimal,

which means that the fixed allocation with the TDMA strategy provides the exact

channel resource required for stabilization of each sub-system. However, when fad-

ing exists, since the channel may have different capacity at different time due to

the stochastic nature of the fading, the time-invariant allocation fails to provide the

critical channel resource for stabilization of each sub-system. Similar issue is also

encountered in networked control over rate limited communication channels. When

the digital channel is with constant data rate, [22] shows that the time-invariant

allocation achieved by time-sharing is optimal. When the digital channel is with

stochastic data rate, the time-invariant allocation in [35] is only sufficient. The sta-

bilizability region achieved in [35] is a convex hull, which can be conservative even

for two-dimensional systems. Therefore, we propose to use time-varying allocations

to achieve larger stabilizability regions in Chapter 3 and Chapter 4.

2.3 Control over Communication Networks

The existing results for networked control over communication channels are rather

comprehensive and satisfactory. As to control over communication networks, there
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are scant results. The results obtained in [45] show that depending on whether

there exists a channel feedback or not, the optimal control structure is quite differ-

ent. The results reveal the importance of information structure in networked control

systems, which actually is well-known [66,67]. Different from the information struc-

ture caused by channels’ properties, such as whether there exists a channel feedback,

the structure of communication networks also imposes constraints on the available

information to each pair of encoder and decoder. Moreover, as noted in [68], differ-

ent from control over point-to-point communication channels, the information flow

in decentralized control over communication networks is implicit! The plant not

only serves as source as in control over point-to-point communication channels, but

also serves as channels in decentralized control. Thus the study of control over com-

munication networks is more difficult than the study of control over point-to-point

communication channels. In the following, we review some control over communi-

cation networks problems, in which there exist certain communication structures.

The effects those communication structures placed on the networked control system

are reviewed and related control problems are discussed.

2.3.1 Control over Multiple Access Channel/Broadcast Chan-

nels

The multiple access channel (MAC) and broadcast channel (BC) are two important

kinds of communication channels in wireless communication, for which there exist

several senders and one receiver or one sender and several receivers. The capacity

regions for MAC and BC are well known when there exists no feedback from the

channel output to the channel input, see [4, 5]. Different from the discrete mem-

oryless channel in point-to-point communication, for which Shannon asserts that

feedback does no help in increasing the channel capacity, feedback can essentially

enlarge the capacity regions of MAC and BC [69]. In [70, 71], the authors charac-

terize the critical channel capacity regions for two-user MAC with channel feedback

and provide a bound for two-user BC with channel feedback. The methods adopted

Nanyang Technological University Singapore



18 2.3. CONTROL OVER COMMUNICATION NETWORKS

in [70, 71] are extensions of the well-known Schalkwijk scheme for communication

over AWGN channels with feedback [65]. Later, [72] extends the methods pro-

posed in [70,71] to more general n-user MAC and BC with channel feedback, which

also apply to inference networks. The proposed methods in [70, 71] are also used

in [73,74] to derive mean square stabilizability conditions for control over MAC and

BC. However, the derived necessary conditions and sufficient conditions are too

coarse to provide insight into how communication network structures in MAC and

BC affect the stabilizability of control systems.

2.3.2 Decentralized Stabilization under Communication Con-

straint

Decentralized control under communication constraint is another problem that is

studied in control communities. Decentralized control system is a control system

equipped with multiple sensors and controllers. Each sensor and controller can only

observe and control partial states of the plant, respectively. Thus each sensor only

has limited information about the systems states. For decentralized control under

communication constraints, the first intriguing result is given in [75]. The paper

studies a control system with multiple sensors and a single controller. There ex-

ist data rate limitations among the communication channels between the sensors

and the controller. The derived results show that to ensure the stabilizability, it is

necessary that the total communication rate associated with every unstable mode

summed over the sensors that can observe this mode is greater than the logarithm

of the magnitude of this unstable eigenvalue. And also, the obtained result has a

max-flow min-cut interpretation. The result is further extended in [76] to multiple-

controller case, where they relate the data rate for each channel that connects the

sensor and the controller to the unstable eigenvalues via the observable space of

the sensor and the controllable space of the controller. The sum-rate minimization

problem is studied in [77, 78]. In [77], they show that for a multiple-sensor single-

controller decentralized control system, the sum-rate is the same as the centralized
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control. Thus there is no rate loss on performance due to decentralization. However,

for the case when there exist multiple controllers, i.e., there does not exist a central-

ized decoder at the plant, there is in general a rate loss in decentralized systems as

compared to centralized ones [78]. The derived results in [77,78] provide insight into

how communication structures affect the stability and performance of the networked

control system. Reference [47] studies the decentralized control problem with two

sensors and one controller communicated over packet erasure channels, where the

authors derive necessary and sufficient conditions on the channel parameters to en-

sure mean square stabilizability. However, for other communication channels, such

as the more realistic fading channels, there still exist no results.

2.3.3 Distributed Consensus over Communication Networks

In many applications, single-agent systems are incapable of dealing with complex

tasks, and cooperation among MASs becomes necessary. Among various coopera-

tive tasks, consensus, which requires all agents to reach an agreement on certain

quantity of common interest, builds the foundation of others [79–81]. One question

arises before control synthesis: whether there exist distributed controllers such that

the MAS can achieve consensus. This problem is usually referred to as the con-

sensusability of MASs. Several important results have been derived to answer this

question, under an undirected/directed communication topology [82–85]. In [82],

it is shown that to ensure the consensus of a continuous-time linear MAS, the LTI

dynamics should be stabilizable and detectable, and the undirected communica-

tion topology should be connected. Furthermore, references [83, 86] show that for

a discrete-time linear MAS, the product of the unstable eigenvalues of the system

matrix should additionally be upper bounded by a function of the eigenratio of

the undirected graph. Extensions to directed graphs and robust consensus can be

found in [84, 85]. Most of the consensusability results discussed above are derived

assuming perfect communications. However, this is not the case in practical ap-

plications, where communication channels naturally suffer from limited data rate
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constraints, signal-to-noise ratio constraints, time-delay and so on. Therefore, it

is necessary to study the consensusability problem of MASs under communication

channel constraints.

Reference [87] considers the average consensus problem for discrete-time first-order

MASs over rate-limited channels with undirected graphs. A distributed consensus

protocol based on dynamic encoding and decoding is proposed. The authors in [87]

show that the average consensus can be achieved with only one bit information ex-

change between each pair of adjacent agents at every time step. The extensions

to the case with bounded time-delay and time-varying graphs for first-order MASs

can be found in [88] and [89], respectively. Reference [90] considers the distributed

coordination problem of second-order multi-agent systems with partially measur-

able states under rate-limited communication channels. A quantized-observer based

encoding-decoding scheme and a distributed coordinated control law is proposed.

The authors prove that two bits quantizations are sufficient for the asymptotic

synchronization of agent states. Determining the critical data rate for distributed

consensus of general n-th order MASs can be challenging. Only limited results exist

for special kinds of n-th order systems; see [91, 92]. The consensusability problems

of discrete-time linear MASs with a bound input delay for undirected graphs and di-

rected graphs are studied in [93,94] and [95], respectively. Utilizing techniques from

robust control, the authors in [93–95] characterized the maximal tolerable time-delay

for the existence of a linear distributed consensus controller. The results show that

the consensusability is related to the time-delay, unstable poles and non-minimum

phase zeros of the system dynamics. Reference [96] studies the distributed consensus

problem for linear MASs over uncertain communication channels. The communica-

tion channels suffer from deterministic uncertainties, which can be additive pertur-

bations described by either transfer functions or norm bounded matrices. Necessary

conditions are derived in terms of the Mahler measure of the agents for the existence

of a distributed consensus protocol. The authors also present sufficient consensus

conditions in terms of linear matrix inequalities. The consensusability problem of

linear MASs over fading channels are studied in [97,98] for discrete-time systems and
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continuous-time systems respectively. Reference [97] considers the distributed esti-

mation problem over analog fading networks using constant-gain estimators. Neces-

sary and sufficient conditions on communication networks for bounded mean square

estimation error covariance are characterized, which reveal the fundamental limi-

tation on distributed estimation induced by local communications, channel fading,

and system dynamics. Reference [98] obtains similar conclusions. It is show in [98]

that the multi-agent consensusability depends on parameters of system dynamics,

the communication graph, channel uncertainties, and the time delay.

In this thesis we are interested in the consensusability problems of discrete-time

linear MASs over fading networks. The framework considered in [97] deals with

identical fading networks with undirected communication topologies only. It is still

unknown how the directed communication topology and non-identical fading net-

works affect the consensusability of MASs, and this problem will be analyzed in

Chapter 5 and Chapter 6.
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Networked Control over Fading

Channels
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Chapter 3

Stabilization over Power

Constrained Fading Channels

3.1 Introduction

Traditionally, control over multiplicative noise communication channels and addi-

tive noise communication channels are studied separately, see [48, 61, 62]. While in

wireless communications, since the SNR constraint and the channel fading are both

unavoidable [12,13], it is practical to consider them as a whole. In this chapter, we

are interested in a power constrained fading channel which is subject to both fading

and SNR constraints. We aim to characterize the conditions on the communication

channel to ensure the mean square stabilization of discrete-time LTI systems. Note

that [63] has derived the necessary and sufficient condition for such kind of chan-

nels to ensure mean square stabilizability under a linear encoder/decoder. It is still

unknown whether we can achieve a larger stabilizability region with a more general

causal encoder/decoder. This chapter provides a positive answer to this question.

While this chapter only studies the state feedback case, the techniques proposed in

Chapter 4 can be used to address the output feedback case.

This chapter is organized as follows. The problem formulation is provided in Sec-

tion 3.2. The fundamental limitation of stabilizability over a power constrained
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fading channel is studied in Section 3.3. In Section 3.4, conditions for the mean

square stabilizability are provided. Section 3.5 provides numerical illustrations.

This chapter ends with concluding remarks in Section 3.6.

3.2 Problem Formulation

This chapter studies the following discrete-time linear system

xt+1 = Axt +But, (3.1)

where x ∈ Rn is the system state, u ∈ R is the control input and (A,B) is control-

lable. The initial state x0 = [x1,0, . . . , xn,0]′ is randomly generated from a Gaussian

distribution with zero mean and bounded covariance matrix. Without loss of gen-

erality, the following assumption is made as in [35,64].

Assumption 3.2.1. All the eigenvalues of A are either on or outside the unit circle.

The configuration of the networked control system is depicted in Figure 3.1. The

system state xt is observed and encoded by the sensor/encoder Et(·) and transmitted

to the controller/decoder Dt(·) through a slow fading channel. The sensor/encoder

Et(·) and the controller/decoder Dt(·) are allowed to be of any causal form and can

use all the available information till time t to generate their output. The fading

channel is modeled as

rt = γtst + ωt, (3.2)

where st denotes the channel input, which has an average power constraint, i.e.,

E{s2
t} ≤ P ; rt represents the channel output; {γt}t≥0 is the i.i.d. channel fading with

bounded mean and variance; {ωt}t≥0 is an AWGN with zero-mean and variance σ2
ω.

We also assume that x0, {γt}t≥0, {ωt}t≥0 are independent; after each transmission,

the instantaneous fading γt is known at the decoder side at every step and there

exists a channel feedback that transmits one-step delayed information of rt, γt from

the decoder to the encoder.
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xt+1 = Axt +But

Plant

st = Et(xt, rt−1, γt−1)

Sensor/Encoder

ut = Dt(r
t, γt)

Controller/Decoder

⊗⊕ γtωt
strt

ut xt

rt−1, γt−1

Figure 3.1: Networked control over a power constrained fading channel

In this chapter, for the given plant (3.1), we try to characterize requirements on the

power constrained fading channel (3.2), such that there exist coding and controlling

strategies {Et(·)}t≥0, {Dt(·)}t≥0 that can mean square stabilize the system, i.e., to

render limt→∞ E {xtx′t} = 0.

Remark 3.2.1. The knowledge of the fading level at the decoder side can be obtained

for slow fading channels via receiver estimation in each sampling interval [12]. In a

pilot-based channel estimation scheme, a known sequence is firstly transmitted and

used for the receiver to estimate the channel state. Since the fading is slow varying

and approximately constant in each sampling interval, the channel fading can be

estimated with reasonable accuracy [12, 13]. Thus to simplify the study, we assume

the perfect knowledge of the channel fading as in [99].

Remark 3.2.2. Noiseless channel feedback may not be available in some settings.

However, there are situations where this assumption is natural [65, 100]. A good

example is the communication with a satellite. The power in the ground-to-satellite

direction can be much larger than in the reverse direction that the first link can

be considered as a (essentially) noiseless link [65]. Besides, fading can be used

to model quantization effects in digital channels [101], where knowing the channel

input equally means knowing the channel output. Fading channels can also be used to

model channels suffering from the packet loss [48], where the use of acknowledgment

is equivalent to having a noiseless channel feedback. In some scenarios, the channel

feedback can be realized through the plant with suitable designed control policies [102].
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Thus the assumption of noiseless channel feedback is widely used in network control

research, see [7, 25, 100, 103–106].

Remark 3.2.3. The remote control setting in Figure 3.1 has been widely adopted in

networked control research (e.g., [35, 37, 40]). The aerial robotics research platform

in [107] is one example of our feedback control configuration. The attitude and

position of the aerial robot are observed via a sensing system such as a motion

capture system. The observed value is processed on one or more standard computers

and then transmitted to the aerial robot over wireless channels to implement the

control algorithm.

3.3 Fundamental Limitations

Since the entropy power provides a lower bound for the mean square value of the

system state [62], we can treat the entropy power as a measure of the uncertainty

of the system state and analyze its update, which poses a fundamental limitation

of networked control over fading channels. The result is formalized in the following

lemma. The proof essentially follows the same steps as in [35,62,105], however, with

some differences due to the channel structure.

Lemma 3.3.1. There exist coding and controlling strategies {Et(·)}t≥0, {Dt(·)}t≥0,

such that the system (3.1) can be mean square stabilized over the channel (3.2), only

if

(detA)
2
nE
{
e−

2
n
ct
}
< 1, (3.3)

where ct = 1
2

ln(1 +
γ2
tP
σ2
ω

) is the instantaneous Shannon channel capacity of (3.2).

The following definitions are needed in the proof of Lemma 3.3.1 and are stated first,

which are borrowed from [62]. Let fX and fX|y denote the probability density of a

random variableX, and the probability density ofX conditioned on the event Y = y,

respectively. The differential entropy of X is defined as H (X) = −E {ln fX}. The

entropy ofX conditioned on the event Y = y is defined by Hy(X) = H (X|Y = y) =
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−Ey{ln fX|y}. The random variable associated with Hy(X) is denoted by HY (X).

The conditional entropy of X given the event Y = y and averaged over Y is defined

by H (X|Y ) = E {HY (X)}, and the conditional entropy ofX given the events Y = y

and Z = z and averaged only over Y by Hz(X|Y ) = Ez{HY,Z(X)}. The mutual

information between two random variables X and Y conditioned on the event Z = z

is defined by Iz(X;Y ) = Hz(X)−Hz(X|Y ). Given a random variable X ∈ Rn, the

entropy power of X is defined by N (X) = 1
2πe

e
2
n

H (X). Denote the entropy power

of X given the event Y = y by Ny(X) = 1
2πe

e
2
n

Hy(X), and the random variable

associated with Ny(X) by NY (X). The conditional entropy power of X given the

event Y = y and averaged over Y is defined by N (X|Y ) = E {NY (X)}. For

any encoding strategy, the following lemma shows that the amount of information

that the channel output contains about the source equals that the channel output

contains about the channel input.

Lemma 3.3.2. Let X be a random variable, f(X) be a function of X, and Y =

f(X)+N with N being a random variable that is independent of X. Then I (X;Y ) =

I (f(X);Y ).

Proof. Since H (Y |X) = H (Y |X, f(X)) ≤H (Y |f(X)), we have H (Y ) = I (X;Y )+

H (Y |X) ≤ I (X;Y ) + H (Y |f(X)). Thus

H (Y )−H (Y |f(X)) = I (Y ; f(X)) ≤ I (X;Y ).

Besides, since X → f(X) → Y forms a Markov chain, Y → f(X) → X also forms

a Markov chain. The data processing inequality [4] then implies that I (X;Y ) ≤

I (f(X);Y ). Combining the two facts, we have I (X;Y ) = I (f(X);Y ).

Proof of Lemma 3.3.1: Here we use the uppercase letters X ,S,R,Γ to denote

random variables of the system state, the channel input, the channel output and

the channel fading. We use the lowercase letters x, s, r, γ to denote their realiza-

tions. The average entropy power of Xt conditioned on (Rt,Γt) is N (Xt|Rt,Γt) =

E{NRt,Γt(Xt)}
(a)
= E{ERt−1,Γt{NRt,Γt(Xt)}}

(b)
= 1

2πe
E{ERt−1,Γt{e

2
n

HRt,Γt (Xt)}}, where
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(a) follows from the law of total expectation and (b) from the definition of entropy

power. Since

Ert−1,γt{e
2
n

HRt,Γt (Xt)}
(c)

≥ e
2
n
Ert−1,γt{HRt,Γt (Xt)}

(d)
= e

2
n

Hrt−1,γt (Xt|Rt)

= e
2
n(Hrt−1,γt (Xt)−Irt−1,γt (Xt;Rt))

≥ e
2
n(Hrt−1,γt (Xt)−Irt−1,γt (X

t;Rt))

(e)
= e

2
n(Hrt−1,γt (Xt)−Irt−1,γt (St;Rt))

(f)

≥ e
2
n(Hrt−1,γt (Xt)−ct)

(g)
= e−

2
n
cte

2
n

Hrt−1,γt−1 (Xt),

where (c) follows from Jensen’s inequality; (d) from the definition of conditional

entropy; (e) from Lemma 3.3.2; (f) from the definition of channel capacity, i.e.,

Irt−1,γt(St;Rt) ≤ ct and (g) from the fact that Xt is independent of Γt, we have

N (Xt|Rt,Γt) ≥ 1

2πe
E{e−

2
n
cte

2
n

HRt−1,Γt−1 (Xt)} = E{e−
2
n
ct}N (Xt|Rt−1,Γt−1).

Since

e
2
n

Hrt,γt (Xt+1) = e
2
n

Hrt,γt (AXt+BUt) (h)
= e

2
n

Hrt,γt (AXt)

(i)
= e

2
n

Hrt,γt (Xt)+
2
n

ln | detA|

= (detA)
2
n e

2
n

Hrt,γt (Xt),

where (h) follows from the fact that ut = Dt(r
t, γt) and (i) from Theorem 8.6.4

in [4], we have

N (Xt+1|Rt,Γt) = E{ 1

2πe
(detA)

2
n e

2
n

HRt,Γt (Xt)} = (detA)
2
nN (Xt|Rt,Γt).
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In view of the above results, we have

N (Xt+1|Rt,Γt) ≥ (detA)
2
nE{e−

2
n
ct}N (Xt|Rt−1,Γt−1).

In light of Proposition II.1 in [62], to ensure mean square stability, N (Xt+1|Rt,Γt)

should converge to zero asymptotically, which requires (detA)
2
nE{e− 2

n
ct} < 1. The

proof is completed. �

Let λ1, . . . , λd denote the distinct unstable eigenvalues (if λi is complex, we exclude

from this list its complex conjugate) of A in (3.1) with |λ1| ≥ |λ2| ≥ . . . ≥ |λd|.

Let mi represent the algebraic multiplicity of each λi. The real Jordan canonical

form J of A then has form that J = diag(J1, . . . , Jd) ∈ Rn×n [22], where Ji ∈ Rνi×νi

and | det Ji| = |λi|νi , with νi = mi if λi ∈ R, and νi = 2mi otherwise. We can

equivalently study the following dynamical system instead of (3.1)

xt+1 = Jxt +OBut, (3.4)

for some transformation matrix O. Each block Ji has an invariant real subspace

Aoi of dimension %ioi, for any oi ∈ {0, . . . ,mi}, where %i = 1 if λi ∈ R, and

%i = 2 otherwise. Consider the subspace A formed by taking the product of Aoi ,

i = 1, . . . , d. The total dimension of A is
∑d

i=1 %ioi and the real Jordan form for the

dynamics in the subspace A is JV with | det JV | =
∏d

i=1 |λi|%ioi . Since (3.1) is mean

square stabilizable, the dynamics in the subspace A is also mean square stabilizable.

In view of Lemma 3.3.1, the following fundamental limitations can be obtained.

Theorem 3.3.1. There exist coding and controlling strategies {Et(·)}t≥0, {Dt(·)}t≥0,

such that the system (3.1) can be mean square stabilized over the channel (3.2) only

if [ln |λ1|, . . . , ln |λd|]′ ∈ Rd satisfy that for all oi ∈ {0, . . . ,mi}, i = 1, . . . , d with

o =
∑d

i=1 %ioi,
d∑
i=1

%ioi ln |λi| < −
o

2
lnE

{(
σ2
ω

σ2
ω + γ2

tP

) 1
o

}
. (3.5)

Theorem 3.3.1 implies that even in the presence of a noiseless channel feedback, there

still exists a fundamental limitation for the stabilizability of networked control over
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power constrained fading channels. Besides, for scalar systems where A = λ1, ln |λ1|

should satisfy the following constraint to ensure mean square stabilizability

ln |λ1| < −
1

2
lnE

{
σ2
ω

σ2
ω + γ2

tP

}
. (3.6)

Moreover, for two-dimensional systems with distinct eigenvalues λ1, λ2, the following

requirement in addition to (3.6) should be satisfied

ln |λ1|+ ln |λ2| < − lnE

{(
σ2
ω

σ2
ω + γ2

tP

) 1
2

}
. (3.7)

3.4 Mean Square Stabilizability

The existence of a noiseless channel feedback implies that there is no dual effect

of control [108], i.e., separation between estimation and control holds, which will

simplify the coding design. Indeed, we have the following lemma.

Lemma 3.4.1 ( [105]). If (A,B) is controllable, and there exists an estimate x̂t

for the initial system state x0, such that the estimation error et = x̂t − x0 satisfies

the following property,

E {et} = 0, (3.8)

lim
t→∞

AtE {ete′t} (A′)
t

= 0, (3.9)

the system (3.1) can be mean square stabilized by the controller

ut = K(Atx̂t +
t∑
i=1

At−iBui−1)

with K being selected such that A+BK is stable.

Remark 3.4.1. Assumption 3.2.1 can be justified from Lemma 3.4.1. Suppose that

the system matrix A contains eigenvalues that are within the unit circle. Then,
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the real Jordan canonical form J of A has the diagonal structure J = diag(Ju, Js),

where Ju contains eigenvalues that are either on or outside the unit circle and Js

contains eigenvalues that are within the unit circle. The initial system state x0 can

be partitioned correspondingly as x0 = [x′u,0, x
′
s,0]′, with xu,0 being the initial system

state that corresponds to eigenvalues either on or outside the unit circle and xs,0

corresponding to eigenvalues within the unit circle. In view of Lemma 3.4.1, if

there exists an estimate x̂t = [x̂′u,t, x̂
′
s,t]
′ for the initial system state x0, such that

the estimation error et = x̂t − x0 = [e′u,t, e
′
s,t]
′ satisfies (3.8) and (3.9), the system

can be mean square stabilized. The conditions (3.8) and (3.9) are equivalent to the

following requirements

E {eu,t} = 0, (3.10)

lim
t→∞

J tuE
{
eu,te

′
u,t

}
(J ′u)

t = 0, (3.11)

E {es,t} = 0, (3.12)

lim
t→∞

J tsE
{
es,te

′
s,t

}
(J ′s)

t = 0. (3.13)

Simply let x̂s,t = 0. Since limt→∞ J
t
s = 0 and E {xs,0} = 0, we know that (3.12)

and (3.13) hold. Thus we only need to use the channel to transmit the information

about xu,0 and design communication schemes to satisfy (3.10) and (3.11). There-

fore, we can ignore the stable part of the system dynamics without loss of generality.

In the sequel, we shall focus on the construction of communication/estimation algo-

rithms which can achieve (3.8) and (3.9). To better convey our ideas, we start with

scalar systems.

3.4.1 Scalar Systems

Theorem 3.4.1. Suppose A = λ1 ∈ R. There exist coding and controlling strategies

{Et(·)}t≥0, {Dt(·)}t≥0, such that the system (3.1) can be mean square stabilized over

the channel (3.2) if and only if (3.6) holds.
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The necessity follows directly from Theorem 3.3.1. For the sufficiency, we can show

that a variation of the Schalkwijk coding scheme [65] can stabilize the scalar system

if (3.6) holds. The proof is similar to that of the AWGN case in [105] with some

differences due to the existence of channel fading.

Proof. Suppose the estimate of x0 given by the decoder is x̂t at time t and the

estimation error is et = x̂t − x0. The encoder is designed as

s0 =

√
P
σ2
x0

x0, st =

√
P
σ2
et−1

(x̂t−1 − x0) , t ≥ 1, (3.14)

with σ2
x0

, σ2
et−1

representing the variances of x0 and et−1 respectively. The decoder

is designed as

x̂0 =

√
σ2
x0

P
r0, x̂t = x̂t−1 −

Eγt{rtet−1}
Eγt{r2

t }
rt, t ≥ 1. (3.15)

Since at time t, the encoder knows the one-step delayed channel output rt−1, the

fading γt−1 and the decoding law, it can thus simulate the decoder to obtain the

estimate x̂t−1. With the designed encoder (3.14) and decoder (3.15), it is easy to

show that E {e0} = 0 and E {e2
0} is bounded. When t ≥ 1, we have from (3.15) that

et = et−1 −
Eγt{rtet−1}
Eγt{r2

t }
rt. (3.16)

By induction arguments, we have E {et} = 0 for all t ≥ 1. Thus (3.8) is satisfied.

Denote êt−1 = Eγt{rtet−1}/Eγt{r2
t }rt. Since êt−1 is the minimal mean square error

estimate (MMSE) of et−1 based on rt, from (3.16), we have

E{e2
t} = E{Eγt{(et−1 − êt−1)2}}

(a)
= E{ σ2

ω

σ2
ω + γ2

tP
E{e2

t−1}}

= E{ σ2
ω

σ2
ω + γ2

tP
}tE{e2

0},

where (a) is a direct consequence of the MMSE. Thus if λ2
1E
{

σ2
ω

σ2
ω+γ2

tP

}
< 1, the
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designed encoder/decoder pair (3.14) and (3.15) can guarantee (3.9). In view of

Lemma 3.4.1, the sufficiency is proved.

Remark 3.4.2. Since γt is known at the decoder side, we can show that a slight

modification of the coding scheme in [64], where the expectation is replaced with the

conditional expectation with respect to γt, can stabilize the closed-loop system without

channel feedback if (3.6) holds.

Remark 3.4.3. Theorem 3.4.1 indicates that the anytime capacity of the power

constrained fading channel (3.2) corresponding to the anytime-reliability 2 ln |λ1|

is Ca = −1
2

lnE
{

σ2
ω

σ2
ω+γ2

tP

}
. From Jensen’s inequality, we know that E {e−2ct} ≥

e−2E{ct} and the equality holds if and only if ct is a constant. Thus it follows that

Ca = 1
2

ln 1
E{e−2ct} ≤

1
2

ln 1
e−2E{ct} = E {ct} = CShannon, which means that the anytime

capacity of the power constrained fading channel is no greater than its Shannon

capacity. Besides, for AWGN channels, where ct is a constant, we have that the

anytime capacity is equal to its Shannon capacity, which coincides with the results

in [7].

3.4.2 Two-Dimensional Systems

The stabilizability condition for two-dimensional systems is stated in Theorem 3.4.2.

Theorem 3.4.2. Suppose n = 2. There exist coding and controlling strategies

{Et(·)}t≥0, {Dt(·)}t≥0, such that the system (3.1) can be mean square stabilized over

the channel (3.2) if and only if (3.5) holds.

In this subsection, we only provide the optimal communication scheme for two-

dimensional systems with unstable eigenvalues having different magnitudes, i.e., A =[
λ1 0
0 λ2

]
with λ1, λ2 ∈ R and |λ1| > |λ2| ≥ 1, and in view of Theorem 3.3.1, it suffices

to show that a sufficient stabilizability condition is (3.6) and (3.7). For the case of

two-dimensional systems with eigenvalues of equal magnitude, the communication

scheme designed in the Section 3.4.4 is shown to be optimal; see Corollary 3.4.1.
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3.4.2.1 Communication Structure

Since there are two sources x1,0, x2,0, we design two encoder/decoder pairs in the

communication scheme and also a scheduler to multiplex the channel use. The i-th

encoder/decoder pair is used to transmit the information of xi,0. The scheduler

determines which encoder/decoder pair should use the channel. Suppose at time

t, the i-th encoder/decoder pair has access to the channel. The encoder i first

generates a symbol si,t and transmits it to the decoder through the communication

channel. The decoder i then forms an estimate x̂i,t based on the channel output

ri,t. The controller maintains an array x̂t = [x̂1,t, x̂2,t]
′ that represents the most

recent estimate of x0, which is set to 0 at t = 0. When the information about xi,0

is transmitted, only x̂i,t is updated at the controller side. The controller applies the

control law in Lemma 3.4.1 to the plant at every step.

The structure of the communication protocol is illustrated in Figure 3.2, where tik

is the time when the i-th encoder/decoder pair is scheduled to use the channel for

its k-th transmission.

Figure 3.2: Transmission protocol configuration

3.4.2.2 Encoder/Decoder Design

The following encoding/decoding strategy is used, which is modified from (3.14)

and (3.15). The encoder i is designed as

si,ti0 =

√
P
σ2
xi,0

xi,0,

si,tik =

√√√√ P
σ2
e
i,ti
k−1

(x̂i,tik−1
− xi,0), k ≥ 1,

(3.17)
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where σ2
xi,0

and σ2
ei,t

represent the variance of xi,0 and ei,t, respectively, with ei,t

being the i-th component of the estimation error et. The decoder i satisfies

x̂i,ti0 =

√
σ2
xi,0

P
ri,ti0 ,

x̂i,tik = x̂i,tik−1
−

Eγ
ti
k

{ri,tikei,tik−1
}

Eγ
ti
k

{r2
i,tik
}

ri,tik , k ≥ 1.

(3.18)

3.4.2.3 Scheduler Design

Let δ = σ2
ω

σ2
ω+P . Define the scheduling indication vector as Φ(t) = [φ1(t), φ2(t)]′ with

φ1(t), φ2(t) ∈ {0, 1} and φ1(t) + φ2(t) = 1. When the i-th encoder/decoder pair is

scheduled to use the channel at time t, the variable φi(t) is set to 1, otherwise it is

set to 0. Let Ψl(i, j) =
∏j

k=i (
σ2
ω

σ2
ω+γ2

kP
)
φl(k)

with l = 1, 2, i, j ∈ N+ and i ≤ j. Similar

to the analysis for scalar systems, we can show that with the encoder (3.17) and

the decoder (3.18), (3.8) always holds and E
{
e2
i,t

}
= E {Ψi(t

i
0 + 1, t)}E

{
e2
i,ti0

}
for

i = 1, 2. Since φi(t) = 0 when t < ti0, to guarantee (3.9), we should design schedulers

to ensure that, under the stochastic channel fading, limt→∞ E {λ2t
1 Ψ1(1, t)} = 0 and

limt→∞ E {λ2t
2 Ψ2(1, t)} = 0, or equivalently limt→∞ E{λ2t

1 Ψ1(1, t) + λ2t
2 Ψ2(1, t)} = 0.

Thus the scheduler should be designed to optimally allocate φ1 and φ2 to minimize

λ2t
1 Ψ1(1, t)+λ2t

2 Ψ2(1, t). The optimal allocation should satisfy
∑t

j=1 φ2(j) ln σ2
ω

σ2
ω+γ2

jP
=

2t ln |λ1|
|λ2|+

∑t
j=1 φ1(j) ln σ2

ω

σ2
ω+γ2

jP
, which is obtained by requiring λ2t

1 Ψ1(1, t) = λ2t
2 Ψ2(1, t).

To this end, Algorithm 3.1 is designed, which enforces φ1 and φ2 to meet the above

requirement when t is sufficiently large.

In Algorithm 3.1, τ1 is the scheduler parameter to be defined latter; Ťk =
∑k

j=1 T̄j,

k ∈ N+ is the time when k rounds of transmissions are completed and Ť0 = 0;

T̄k denotes the total time period to complete the k-th round of transmissions, i.e.,

T̄k = T 1
k + T 2

k . Here we assume that both the encoder and the decoder know the

scheduling algorithm. Since the switching among transmissions in Algorithm 3.1

relies on the fading process, which is known to the encoder and the decoder, they

are both aware of when to switch transmissions and which encoder/decoder pair
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is currently using the channel. Thus we do not need to consider the coordination

among encoders and decoders. The scheduled transmission periods are depicted in

Figure 3.3.

T̄1

T1
1 T2

1

Ť0 = 0 Ť1
· · ·

T̄kŤk−1 Ťk

T1
k T2

k

· · · time

Figure 3.3: Scheduled transmissions with Algorithm 3.1

Algorithm 3.1: Chasing and Optimal Stopping Scheduler for Power Con-
strained Fading Channels

In the k-th round of transmissions

• The first encoder/decoder pair is scheduled to use the channel until

Ťk−1+T 1
k∑

t=Ťk−1+1

ln
σ2
ω

σ2
ω + γ2

tP
< τ1 ln δ (3.19)

with T 1
k being the minimal time period satisfying (3.19).

– If

τ1 ln δ + 2T 1
k ln
|λ1|
|λ2|

< 0 (3.20)

the second encoder/decoder pair is scheduled to use the channel, until

Ťk−1+T 1
k+T 2

k∑
t=Ťk−1+T 1

k+1

ln
σ2
ω

σ2
ω + γ2

tP
< 2(T 1

k + T 2
k ) ln

|λ1|
|λ2|

+ τ1 ln δ (3.21)

with T 2
k being the minimal time period satisfying (3.21).

– Otherwise, set T 2
k = 0 and no transmission is carried out.

• Repeat this process.

It is clear from Algorithm 3.1 that T̄i is independent of T̄j and T 2
i is independent of

T 2
j for any i 6= j, i, j ∈ N+. The switching condition (3.20) of Algorithm 3.1 implies

that if T 1
k < T c := τ1 ln δ

2(ln |λ2|−ln |λ1|) and after the first encoder/decoder pair completes

its transmission, the second encoder/decoder pair can use the channel. Otherwise,
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the first encoder/decoder pair continues to use the channel.

3.4.2.4 Scheduler Parameter Selection

If (3.6) holds, there exists θb with 0 < θb < 1 such that E{( σ2
ω

σ2
ω+γ2

tP
)
θb} = λ−2

1 .

Let f(θa) = 2θa ln |λ1|
|λ2| − lnE{( σ2

ω

σ2
ω+γ2

tP
)
θa
} − 2 ln |λ1|. If (3.7) holds, since f(0) =

−2 ln |λ1| < 0, f(1
2
) = − lnE{( σ2

ω

σ2
ω+γ2

tP
)

1
2}−ln |λ1|−ln |λ2| > 0 and f(θa) is increasing

in θa, there exists θa with 0 < θa <
1
2

such that f(θa) = 0, i.e., E{( σ2
ω

σ2
ω+γ2

tP
)
θa
} =

λ
2(θa−1)
1 λ−2θa

2 . The positive constant τ1 is then selected to satisfy

τ1 > max

{
− ln(λ

2(2−θa)
1 λ2θa

2 )− ln 4

(1− 2θa) ln δ
,
− lnλ2

1 − ln 2

(1− θb) ln δ

}
. (3.22)

3.4.2.5 Proof of Theorem 3.4.2

The necessity follows from Theorem 3.3.1. The gist of the sufficiency proof is to show

that under Algorithm 3.1, E{λ2T̄1
l Ψl(1, T̄1)} < 1 for l = 1, 2. Since the transmission is

scheduled periodically and {T̄k} is i.i.d., we may expect that limt→∞ E {λ2t
l Ψl(1, t)} =

0 holds, which together with Lemma 3.4.1 can guarantee the mean square stabiliz-

ability. The following lemma is needed in the proof of Theorem 3.4.2.

Lemma 3.4.2. Suppose {Wi} with Wi ≤ 0 is i.i.d. with bounded non-zero mean,

define Bt =
∑t

i=1Wi and let T be the first time such that BT < ϕT + Θ with

given ϕ ≥ 0, Θ < 0. If there exists θ ≥ 0 such that E{eθ(Wi−ϕ)} = λ−2, then

E{λ2T} ≤ λ2e−θΘ.

Proof. When ϕ > 0, since Bt is non-increasing and ϕt + Θ is increasing, the

stopping time T is bounded. When ϕ = 0, T is unbounded if and only Θ ≤

limt→∞
∑t

i=1 Wi ≤ 0. Since {Wi} is i.i.d., in view of the law of large numbers, we

have Pr(limt→∞
∑t

i=1Wi/t = E {Wi}) = 1. Thus Pr(limt→∞
∑t

i=1Wi = ∞) = 1,

which implies Pr(Θ ≤ limt→∞
∑t

i=1Wi ≤ 0) = 0. Thus T is almost surely bounded.
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Define Yt = eθBt+bt with b = 2 ln |λ|−θϕ, then E {Yt+1|Yt, . . . , Y1} = YtE
{
eθWt+1+b

}
=

Yt. Thus Yt is a martingale. Since T is either a bounded or an almost surely

bounded stopping time, in view of the optional stopping theorem [109], we have

E {YT} = E {Y1} = 1.

Define η = ϕT + Θ− BT . Since BT < ϕT + Θ and BT−1 ≥ ϕ(T − 1) + Θ, we have

η > 0. When ϕ = 0, since BT−1 ≥ Θ, we have η = Θ−BT = Θ−BT−1−WT ≤ −WT .

When ϕ > 0 and ϕ(T − 1) + Θ ≤ BT−1 ≤ ϕT + Θ, we have η = ϕT + Θ − BT =

ϕ(T − 1) + Θ− BT−1 + ϕ−WT ≤ ϕ−WT . When ϕ > 0 and ϕT + Θ < BT−1 ≤ 0,

we have η = ϕT + Θ − BT = ϕT + Θ − BT−1 − WT < −WT . Thus in general,

η ≤ ϕ−WT .

Since E{YT} = E{eθ(ϕT+Θ−η)+bT} = eθΘE{e(θϕ+b)T e−θη} = eθΘE{λ2T e−θη} = 1, and

E{λ2T e−θη} ≥ E{λ2T eθ(WT−ϕ)} = E{ET{λ2T eθ(WT−ϕ)}} = E{λ2TET{eθ(WT−ϕ)}} (a)
=

λ−2E{λ2T} where (a) follows from the definition of θ, we have E
{
λ2T
}
≤ λ2e−θΘ.

Proof of Theorem 3.4.2: Let Wk = ln σ2
ω

σ2
ω+γ2

kP
. Then it is immediate from (3.19)

that T 1
1 is the first time such that BT 1

1
< ϕ1T

1
1 + Θ1 with ϕ1 = 0 and Θ1 = τ1 ln δ.

Since there exist 0 < θa <
1
2
, 0 < θb < 1 such that E{eθa(Wk−ϕ1)} = λ

2(θa−1)
1 λ−2θa

2 ,

E{eθb(Wk−ϕ1)} = λ−2
1 , from Lemma 3.4.2, we have

E{λ2(1−θa)T 1
1

1 λ
2θaT 1

1
2 } ≤ λ

2(1−θa)
1 λ2θa

2 δ−τ1θa , (3.23)

E{λ2T 1
1

1 } ≤ λ2
1δ
−τ1θb . (3.24)

Suppose T 1
1 < T c. Let Bt =

∑t
k=1WT 1

1 +k. In view of the stopping condition (3.21),

we know that T 2
1 is the first time instant after T 1

1 satisfying that BT 2
1
< ϕ2T

2
1 + Θ2

with ϕ2 = 2 ln |λ1|
|λ2| and Θ2 = 2T 1

1 ln |λ1|
|λ2| + τ1 ln δ. Since E{eθa(Wk−ϕ2)} = λ−2

1 , in view

of Lemma 3.4.2, we have

Eζ{λ
2T 2

1
1 } < λ2

1e
−θaΘ2 . (3.25)

where ζ denote the event T 1
1 < T c. Since θa < 1, when T 1

1 ≥ T c, we have

2T 1
1 (θa − 1) ln |λ1|

|λ2| ≤ 2T c(θa − 1) ln |λ1|
|λ2| < τ1(1− θa) ln δ + ln 2 + 2 ln |λ1|. Rear-

ranging both sides and applying the natural exponential function, we have Ω :=
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λ
2T 1

1
2 − 2λ

2(1+T 1
1 )

1 e−θaΘ2δτ1 < 0. In view of the conditional expectation, we have

E{
2∑
i=1

λ2T̄1
i Ψi(1, T̄1)} ≤ E{λ2T̄1

1 δτ1 + λ2T̄1
2 Ψ2(1, T̄1)}

= E{Eζ{λ2T̄1
1 δτ1 + λ2T̄1

2 Ψ2(1, T̄1)}}+ E{Eξ{λ2T̄1
1 δτ1 + λ2T̄1

2 Ψ2(1, T̄1)}}
(a)

≤ E{Eζ{2λ
2(T 1

1 +T 2
1 )

1 δτ1}}+ E{Eξ{λ
2T 1

1
1 δτ1 + λ

2T 1
1

2 }}
(b)

≤ E{Eζ{2λ
2(1+T 1

1 )
1 e−θaΘ2δτ1}}+ E{Eξ{λ

2T 1
1

1 δτ1 + λ
2T 1

1
2 }}

= E{2λ2(1+T 1
1 )

1 e−θaΘ2δτ1}+ E{Eξ{λ
2T 1

1
1 δτ1 + Ω}}

(c)

≤ 2λ2
1δ
τ1(1−θa)E{λ2(1−θa)T 1

1
1 λ

2θaT 1
1

2 }+ E{Eξ{λ
2T 1

1
1 δτ1}}

(d)

≤ 2λ
2(2−θa)
1 λ2θa

2 δ(1−2θa)τ1 + λ2
1δ

(1−θb)τ1 ,

where ξ denotes the event T 1
1 ≥ T c; (a) follows from (3.21); (b) follows from (3.25);

(c) follows from the fact that when T 1
1 ≥ T c, Ω < 0; (d) follows from (3.23)

and (3.24). Since δ1−2θa < 1 and δ1−θb < 1, if τ1 is selected to satisfy (3.22),

we have that λ2
1δ

(1−θb)τ1 < 1
2
, 2λ

2(2−θa)
1 λ2θa

2 δ(1−2θa)τ1 < 1
2
, which guarantees

E{λ2T̄1
1 Ψ1(1, T̄1) + λ2T̄1

2 Ψ2(1, T̄1)} < 1.

Thus we have

E
{
λ2T̄1

1 Ψ1(1, T̄1)
}
< 1, E

{
λ2T̄1

2 Ψ2(1, T̄1)
}
< 1. (3.26)

Since Ψl(1, Ťk) =
∏k

j=1 Ψl(Ťj−1 + 1, Ťj−1 + T̄j) and {Ψl(Ťj−1 + 1, Ťj−1 + T̄j)}kj=1 are

i.i.d., we have

∞∑
k=0

E


T̄k+1∑
j=1

λŤk+j
l Ψl(1, Ťk)

 =
∞∑
k=0

E


T̄k+1∑
j=1

λT̄0+···+T̄k+j
l

k∏
j=1

Ψl(Ťj−1 + 1, Ťj−1 + T̄j)


=
∞∑
k=0

E

{
λ
T̄k+1+2
l − λ2

l

λ2
l − 1

}
E
{
λT̄1
l Ψl(1, T̄1)

}k
, (3.27)
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for l = 1, 2. In view of (3.26), we further have that

E{
∞∑
t=1

(λ2t
1 Ψ1(1, t) + λ2t

2 Ψ2(1, t))}

=
∞∑
k=0

E{
T̄k+1∑
j=1

(λŤk+j
1 Ψ1(1, Ťk + j) + λŤk+j

2 Ψ2(1, Ťk + j))}

≤
∞∑
k=0

E{
T̄k+1∑
j=1

(λŤk+j
1 Ψ1(1, Ťk) + λŤk+j

2 Ψ2(1, Ťk))} <∞,

which implies that limt→∞ E {λ2t
1 Ψ1(1, t) + λ2t

2 Ψ2(1, t)} = 0. The proof of sufficiency

is completed. �

3.4.3 High-Dimensional Systems: TDMA Scheduler

For general n-dimensional systems, the communication structure is designed simi-

larly to that of the two-dimensional systems. There are n encoder/decoder pairs

of the form (3.17) and (3.18) to transmit the information of xi,0, i = 1, . . . , n. A

scheduler is designed to multiplex the channel use. Define φi, Ψi(·, ·), i = 1, . . . , n

analogously to the two-dimensional case. Similarly, we can prove that with such

communication structure, (3.8) always holds and to guarantee (3.9), we only need

to ensure that, limt→∞ E {λ2t
i Ψi(1, t)} = 0 for all i = 1, . . . , n, or equivalently,

limt→∞ E {
∑n

i=1 λ
2t
i Ψi(1, t)} = 0. Thus the schedulers should be designed to op-

timally allocate φi to minimize
∑n

i=1 λ
2t
i Ψi(1, t). The optimal choice of φ∗i should

satisfy
∑t

j=1 φ
∗
i (j) ln σ2

ω

σ2
ω+γ2

jP
= (
∑t

j=1 ln σ2
ω

σ2
ω+γ2

jP
+ 2t

∑n
i=1 ln |λi|)/n−2t ln |λi|. How-

ever φ∗i is determined by
∑t

j=1 ln σ2
ω

σ2
ω+γ2

jP
, which is not causally available when trans-

mitting xi,0 at any time k < t. When n = 2, we can achieve the desired optimal

allocation by first fixing φ1 to be such that
∑T 1

1
j=1 φ1(j) ln ( σ2

ω

σ2
ω+γ2

jP
) < τ1 ln δ and then

requiring φ2 to achieve (3.21). However, this method is not applicable to the case

of n ≥ 3. In the following, we propose Algorithm 3.2 based on the TDMA principle

and analyze the corresponding stability regions for general high-dimensional sys-

tems, where τi, i = 1, . . . , n are scheduler parameters and their existence are shown

in the proof of Theorem 3.4.3.
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Algorithm 3.2: TDMA Scheduler for Power Constrained Fading Channels

In the k-th round of transmissions

• The first encoder/decoder pair is scheduled to use the channel for a duration
of τ1.

• . . .

• The j-th encoder/decoder pair is scheduled to use the channel for a duration
of τj.

• . . .

• The n-th encoder/decoder pair is scheduled to use the channel for a duration
of τn.

• Repeat this process.

In conjunction with the scheduling Algorithm 3.2, the following sufficient condition

can be obtained.

Theorem 3.4.3. There exist coding and controlling strategies {Et(·)}t≥0, {Dt(·)}t≥0,

such that the system (3.1) can be mean square stabilized over the channel (3.2) if

d∑
i=1

νiln|λi| < −
1

2
lnE

{
σ2
ω

σ2
ω + γ2

tP

}
. (3.28)

Proof. Without loss of generality, here we assume that λ1, . . . , λd are real and

mi = 1. For other cases, readers can refer to the analysis discussed in Chapter

2 of [15]. Specifically, under this assumption, J is a diagonal matrix and d = n.

In Algorithm 3.2, the sensor transmits periodically with a period of τ̄ =
∑n

i=1 τi.

The relative transmission frequency for xj,0 is αj =
τj
τ̄

among the period of τ̄ with∑n
j=1 αj = 1. Similar to the analysis in Section 3.4.2, we can show that (3.8) always

holds and E
{
e2
i,kτ̄

}
= E

{
σ2
ω

σ2
ω+γ2

tP

}αikτ̄
E
{
e2
i,0

}
under the designed communication

scheme. If λ2
iE
{

σ2
ω

σ2
ω+γ2

tP

}αi
< 1 for all i = 1, . . . n, the sufficient condition in Lemma

3.4.1 can be satisfied. To complete the proof, we only need to show the equivalence

between the requirement λ2
iE
{

σ2
ω

σ2
ω+γ2

tP

}αi
< 1 for all i = 1, . . . n and (3.28). On one

hand, since
∑n

i=1 αi = 1, if λ2
iE
{

σ2
ω

σ2
ω+γ2

tP

}αi
< 1 for all i = 1, . . . n, we know that
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(3.28) holds. On the other hand, if (3.28) holds, we can simply choose αi = ln|λi|∑
i ln|λi| ,

which satisfies the requirement that
∑n

i=1 αi = 1 and λ2
iE
{

σ2
ω

σ2
ω+γ2

tP

}αi
< 1 for all

i = 1, . . . , n. The sufficiency is proved.

3.4.4 High-Dimensional Systems: Adaptive TDMA Sched-

uler

The TDMA scheduler only allocates transmissions based on time. Since we also have

the channel state information at the receiver side, we may utilize this information to

achieve better control performance. Moreover, we have the following stabilization

result.

Theorem 3.4.4. There exist coding and controlling strategies {Et(·)}t≥0, {Dt(·)}t≥0,

such that the system (3.1) can be mean square stabilized over the channel (3.2) if

there exist αi, i = 1, . . . , d, with 0 < αi ≤ 1 and
∑d

i=1 αi = 1, such that for all

i = 1, . . . , d,

ln |λi| < −
1

2
lnE

{(
σ2
ω

σ2
ω + γ2

tP

)αi
νi

}
. (3.29)

The above stabilizability result is achieved via an adaptive TDMA scheduler. Differ-

ent from the TDMA scheduler, the adaptive TDMA scheduler used here is adapted

to the fading process. It switches the transmission only if certain stopping conditions

are satisfied. By incorporating the information of the fading process, a larger stabi-

lizability region is achieved. The detailed scheduler design and stability analysis is

given as follows.

3.4.4.1 Scheduling Algorithm

The scheduler is described in Algorithm 3.3, where the parameters τi, i = 1, . . . , n

are defined in the sequel; Ťk =
∑k

j=1 T̄j, k ∈ N+ is the time when k rounds of

transmissions are completed and Ť0 = 0, and T̄k denotes the total time period to

complete the k-th round of transmissions, i.e. T̄k =
∑n

i=1 T
i
k. Since the fading {γt}

is i.i.d., it is clear from Algorithm 3.3 that T ik is independent of T jk , for any i 6= j,

i, j ∈ {1, 2, . . . , n}, k ∈ N+ and the random variables {T̄1, T̄2, . . .} are i.i.d..
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Algorithm 3.3: Adaptive TDMA Scheduler for Power Constrained Fading
Channels

In the k-th round of transmissions

• The first encoder/decoder pair is scheduled to use the channel, until

Ťk−1+T 1
k∑

t=Ťk−1+1

ln
σ2
ω

σ2
ω + γ2

tP
< τ1 ln δ, (3.30)

with T 1
k being the minimal time period satisfying (3.30).

• . . .

• The j-th encoder/decoder pair is scheduled to use the channel, until

Ťk−1+T 1
k+···+T j−1

k +T jk∑
t=Ťk−1+T 1

k+···+T j−1
k +1

ln
σ2
ω

σ2
ω + γ2

tP
< τj ln δ, (3.31)

with T jk being the minimal time period satisfying (3.31).

• . . .

• The n-th encoder/decoder pair is scheduled to use the channel, until

Ťk−1+T 1
k+···+Tn−1

k +Tnk∑
t=Ťk−1+T 1

k+···+Tn−1
k +1

ln
σ2
ω

σ2
ω + γ2

tP
< τn ln δ, (3.32)

with T nk being the minimal time period satisfying (3.32).

• Repeat this process.
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3.4.4.2 Scheduler Parameter Selection

If (3.29) holds, there exist θi, i = 1, . . . , d with 0 ≤ θi <
αi
νi

, such that E{( σ2
ω

σ2
ω+γ2

tP
)
θi} =

|λi|−2. The positive constants τj, j = 1, . . . , n are selected as follows: if xj,0 is the

j-th component of x0 in (3.4) that corresponds to the eigenvalue λi, i = 1, . . . , d,

then τj is selected to be

τj = − 2nαi
νi ln δ

( max
k∈{1,...,d}

ln |λk|
αk/νk − θk

+ ι), j = 1, . . . , n, (3.33)

with ι being an arbitrary positive constant.

3.4.4.3 Proof of Theorem 3.4.4

Here we only consider the case that λ1, . . . , λd are real and mi = νi = 1. We can

easily extend the analysis to other cases by combining the following analysis with the

argument used in Chapter 2 of [15]. The sufficiency proof is focused on showing that

limt→∞ E {λ2t
i Ψi(1, t)} = 0 for all i = 1, . . . , n under Algorithm 3.3. Similar to the

derivation of (3.24), with Algorithm 3.3, we can show that E{λ2T j1
i } ≤ δ−τjθiλ2

i . Since

T 1
1 , T

2
1 , . . . , T

n
1 are independent of each other, we further have E{λ2

∑n
j=1 T

j
1

i δτi} ≤

δτi−θi
∑n
j=1 τjλ2n

i . If τi is selected as (3.33), then
∑n

i=1 τi = − 2n
ln δ

(maxj
ln |λj |
αj−θj + ι) and

τi/(
∑n

j=1 τj) = αi for all i = 1, . . . , n. Thus we have

E
{
λ

2
∑n
j=1 T

j
1

i δτi
}
≤ (δαi−θi)

∑n
j=1 τjλ2n

i

= (δαi−θi)
− 2n

ln δ
(maxj

ln |λj |
αj−θj

+ι)
(δαi−θi)

2n
ln δ

ln |λi|
αi−θi

= (δαi−θi)
2n
ln δ

(
ln |λi|
αi−θi

−maxj
ln |λj |
αj−θj

−ι)
.

Since θi < αi and 0 < δ < 1, we have

E
{
λ2T̄1
i δτi

}
= E

{
λ

2
∑n
j=1 T

j
1

i δτi
}
< 1, (3.34)
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for all i = 1, . . . , n. Since Ψi(1, Ťk) =
∏k

j=1 Ψi(Ťj−1 + 1, Ťj−1 + T̄j) and Ψi(Ťj−1 +

1, Ťj−1 + T̄j) < δτi for any j ∈ N+, in view of (3.34), we have

E{
∞∑
t=1

λ2t
i Ψi(1, t)} =

∞∑
k=0

E{
T̄k+1∑
j=1

λ
2(Ťk+j)
i Ψi(1, Ťk + j)}

<
∞∑
k=0

E{
T̄k+1∑
j=1

λ
2(Ťk+j)
i

k∏
j=1

Ψi(Ťj−1 + 1, Ťj−1 + T̄j)}

<
∞∑
k=0

E{
T̄k+1∑
j=1

λ
2(Ťk+j)
i δkτi}

=
∞∑
k=0

E{λ2T̄1
i δτi}kE{(λ2T̄k+1+2

i − λ2
i )/(λ

2
i − 1)} <∞.

Thus limt→∞ E {λ2t
i Ψi(1, t)} = 0 for all i = 1, . . . , n. The proof of sufficiency is

completed. �

Remark 3.4.4. The stabilizability conditions in the derived theorems above in-

volve the calculation of the expectation E{( σ2
ω

σ2
ω+γ2

tP
)α} for some α. For some fad-

ing distributions, we can give the closed form of this term. For example, when

γt ∼ Bernoulli(ε)1, this term is given by (1− ε)( σ2
ω

σ2
ω+P )α + ε. For other fading distri-

butions that are not possible to calculate the closed forms, this term can be evaluated

numerically via MATLAB or Mathematica.

Remark 3.4.5. In Theorem 3.4.4, the stabilizability condition is expressed in terms

of parameters αis. αi has the physical interpretation that it represents the fraction of

channel resources that is allocated to the sub-dynamics corresponding to the eigen-

value λi. For the given communication channel and system matrix, the existence of

αis can be checked via the following feasibility problem

∃αi > 0, i = 1, . . . , d

s.t.
d∑
i=1

αi = 1 (3.35)

1Pr(γt = 0) = ε, Pr(γt = 1) = 1 − ε, where γt = 0 represents the appearance of fading and
γt = 1 means that the channel is free of fading.

Nanyang Technological University Singapore



3.4. MEAN SQUARE STABILIZABILITY 47

|λi|2 < fi(αi), i = 1, . . . , d (3.36)

with fi(αi) := E
{

( σ2
ω

σ2
ω+γ2

tP
)
αi
νi

}−1

. Since fi(αi) is increasing in αi and fi(0) = 1 ≤

|λi|2, there exists α∗i ≥ 0 such that fi(α
∗
i ) = |λi|2(binary search can be used to find

equation roots to obtain α∗i ). In view of (3.36), any feasible αi must satisfy that

αi > α∗i . If
∑

i α
∗
i ≥ 1, there exists no feasible solution since (3.35) is violated.

Otherwise, one feasible solution is given by αi =
α∗i∑
i α
∗
i
.

Remark 3.4.6. Theorem 3.4.4 indicates that the stabilzable region of [ln|λ1|, . . . , ln|λd|]′ ∈

Rd for a given power constrained fading channel achieved with Algorithm 3.3 is

O = ∪αi>0,
∑
i αi=1 "i∈{1,...,d} [0,−1

2
lnE

{(
σ2
ω

σ2
ω + γ2

tP

)αi
νi

}
),

where " denotes the Cartesian product. We can prove that O is convex. Suppose

x = [x1, . . . , xd]
′ ∈ O and y = [y1, . . . , yd]

′ ∈ O. Then there exist [ϑ1, . . . , ϑd]
′

with ϑi > 0,
∑

i ϑi = 1 and [η1, . . . , ηd]
′ with ηi > 0,

∑
i ηi = 1 such that xi <

−1
2
lnE

{
( σ2

ω

σ2
ω+γ2

tP
)
ϑi
νi

}
, yi < −1

2
lnE

{
( σ2

ω

σ2
ω+γ2

tP
)
ηi
νi

}
for i = 1, . . . , d. Let z = [z1, . . . , zd]

′ =

cx + (1− c)y with 0 < c < 1, then zi = cxi + (1− c)yi and

zi < −
c

2
lnE

{
(

σ2
ω

σ2
ω + γ2

tP
)
ϑi
νi

}
− 1− c

2
lnE

{
(

σ2
ω

σ2
ω + γ2

tP
)
ηi
νi

}
= −1

2
lnE

{
(

σ2
ω

σ2
ω + γ2

tP
)
ϑi
νi

}c
E
{

(
σ2
ω

σ2
ω + γ2

tP
)
ηi
νi

}1−c

(a)

≤ −1

2
lnE

{
(

σ2
ω

σ2
ω + γ2

tP
)
cϑi+(1−c)ηi

νi

}
,

where (a) follows from the Hölder’s inequality. Thus there exist αis with αi =

cϑi + (1 − c)ηi > 0 and
∑

i αi = 1 such that zi < −1
2
lnE

{
( σ2

ω

σ2
ω+γ2

tP
)
αi
νi

}
for all

i = 1, . . . , d, which means z ∈ O. Thus O is convex.

Remark 3.4.7. The sufficiency achieved via the TDMA scheduler in Algorithm 3.2

can be alternatively formulated as follows: if there exist αis with 0 < αi ≤ 1 and
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i=1 αi = 1, such that

ln |λi| < −
αi
2νi

lnE
{

σ2
ω

σ2
ω + γ2

tP

}
, (3.37)

for all i = 1, 2, . . . , d, the system (3.1) can be mean square stabilized. Since f(z) =

z
αi
νi with 0 < αi

νi
≤ 1 is concave, from the Jensen’s inequality, we have

− αi
2νi

lnE{ σ2
ω

σ2
ω + γ2

tP
} ≤ −1

2
lnE{( σ2

ω

σ2
ω + γ2

tP
)

αi
νi

}.

Thus any λi that satisfies (3.37) must also satisfy (3.29) with the same αi, which

implies that the adaptive TDMA scheduler in this chapter achieves a stabilizability

region no smaller than the TDMA scheduler.

Remark 3.4.8. If γt = 1, channel (3.2) degenerates to an AWGN channel and the

necessary and sufficient condition to ensure mean square stabilizability, following

from (3.5) and (3.29), is
∑d

i=1 νi ln |λi| <
1
2

ln(1 + P
σ2
ω

), which recovers the results

in [61, 62]. If γt ∼ Bernoulli(ε), by taking the limit σ2
ω → 0 and P → ∞, we can

obtain that the stabilizability condition over an erasure channel is λ2
1 <

1
ε
, which

degenerates to the results in [46, 48].

When all the strictly unstable eigenvalues have the same magnitude, we can show

that the sufficient condition (3.29) coincides with the necessary condition (3.5), as

shown in the following corollary.

Corollary 3.4.1. Suppose |λ1| = · · · = |λdu | = λ̃ > 1 and |λdu+1| = · · · = |λd| = 1

with 1 ≤ du ≤ d. There exist coding and controlling strategies {Et(·)}t≥0, {Dt(·)}t≥0,

such that the system (3.1) can be mean square stabilized over the channel (3.2) if

and only if

ln λ̃ < −1

2
lnE

{(
σ2
ω

σ2
ω + γ2

tP

) 1
ν1+···+νdu

}
.

Remark 3.4.9. The results derived in this chapter for the power constrained fading
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channel (3.2) can be easily extended to the following channel model

rt = γt(st + ωt), (3.38)

which is suitable for modeling the digital erasure channel with {ωt} denoting the

quantization error and {γt} representing the erasure process. If γt = 0, the com-

munication channel cannot transmit any information. Otherwise, we can always

multiply the received signal rt by 1/γt at the decoder side, and thus the resulted

channel is equivalent to an AWGN channel. From this perspective, channel (3.38)

is essentially the power constrained lossy channel studied in [110]. Thus the results

derived in [110] apply directly to the channel (3.38).

3.5 Numerical Illustrations

3.5.1 Scalar Systems

The authors in [63] derive the necessary and sufficient condition for mean square

stabilization of scalar LTI systems over a power constrained fading channel with

linear encoders/decoders as 1
2

ln(1 +
µ2
γP

σ2
γP+σ2

ω
) > ln |λ| with µγ and σ2

γ being the

mean and variance of γt. We can similarly define the mean square capacity of

the power constrained fading channel achieved with linear encoders/decoders as

Cm = 1
2

ln(1 +
µ2
γP

σ2
γP+σ2

ω
). Assume that the fading follows the Bernoulli distribution,

i.e., γt ∼ Bernoulli(ε), and let P = 1 and σ2
ω = 1, the channel capacities in relation to

the erasure probability are plotted in Figure 3.4. It is clear that CShannon ≥ Ca ≥ Cm

at any erasure probability ε. This result is obvious since we have proved that the

Shannon capacity is no smaller than the anytime capacity. Besides, we have more

freedom in designing the causal encoder/decoder pair compared with the linear

encoder/decoder pair, thus allowing to achieve a higher capacity. The three kinds

of capacity degenerate to the same value when ε = 0 and ε = 1, which represent the

AWGN channel case and the disconnected case respectively. This fact is trivial for
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the disconnected case and is consistent for the AWGN channel case in [7,61,62], in

which the authors show that the anytime capacity is equal to the Shannon capacity

for AWGN channels and causal encoder/decoder pair cannot provide any benefits

in increasing the channel capacity.
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Figure 3.4: Comparison of different channel capacities for scalar systems

3.5.2 Vector Systems

Consider a two-dimensional system (3.4) with J =
[
λ1 0
0 λ2

]
, and the fading in (3.2)

follows the Rayleigh distribution with probability density function f(z;σ) = z
σ2 e
− z2

2σ2 ,

z ≥ 0. Let P = 1, σ2
ω = 1, σ = 2, then the necessary stabilizability region, the suf-

ficient stabilizability regions achieved with the optimal scheduler in Algorithm 3.1,

the TDMA scheduler in Algorithm 3.2, the adaptive TDMA scheduler in Algo-

rithm 3.3 and with linear encoders/decoders in [63], in terms of (ln |λ1|, ln |λ2|) are

plotted in Figure 3.5. We can observe that the region of (ln |λ1|, ln |λ2|) that can

be stabilized with the designed causal encoders/decoders is much larger than that

by linear encoders/decoders in [63]. Thus by extending encoder/decoders from lin-

ear settings to causal requirements, we can tolerate more unstable systems. It is

clear from the figure that the optimal scheduler proposed in Algorithm 3.1 covers

the whole necessary stabilizability region. Besides, as noted in Remark 3.4.7, the

adaptive TDMA scheduler achieves a larger stabilizability region than that of the
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conventional TDMA scheduler. Moreover, the adaptive TDMA scheduler is optimal

at three points, i.e., |λ1| = |λ2|, |λ1| = 1 and |λ2| = 1. This is consistent with

Corollary 3.4.1.

Sufficiency with Adaptive TDMA Scheduler

Necessity and

Sufficiency with Optimal Scheduler

Sufficiency with

TDMA Scheduler

λ1 = λ2

 Necessity and Sufficiency

 with Linear Encoder/Decoder
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ln|λ1|

ln
|λ
2
|

Figure 3.5: Comparison of stabilizability regions for two-dimensional systems

3.6 Summary

This chapter has characterized the requirement for a power constrained fading chan-

nel to allow the existence of coding and controlling strategies that can mean square

stabilize a discrete-time LTI system. Fundamental limitations have been provided

in terms of the system dynamics and channel parameters. Optimal communication

designs have been provided for scalar systems and two-dimensional systems. For

high-dimensional systems, TDMA and adaptive TDMA communication schemes

have also been provided, which are shown to be optimal under certain situations.

Numerical examples are provided to illustrate the derived results.
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Chapter 4

Stabilization over Gaussian

Finite-State Markov Channels

4.1 Introduction

The case with i.i.d. channel fading has been studied in Chapter 3. However, the i.i.d.

assumption fails to capture channel correlations. Since Markov models are simple

and effective to capture temporal correlations of channel conditions [13,111,112], we

are interested in the stabilization problem of discrete-time LTI systems controlled

over Gaussian finite-state Markov channels [113], where the channel fading is mod-

eled by a time-homogeneous Markov process. Due to the existence of correlations of

channel conditions over time, the methods used to deal with the i.i.d. channel fading

in Chapter 3 cannot be applied directly to the Markov channel fading case. Besides,

Chapter 3 only considers the state feedback case and the plant under investigation

is free of process and measurement noises. The output feedback case and how plant

noises affect the stabilizability of the networked control system have yet been stud-

ied. In this chapter, we propose observer/estimator designs and extend the channel

resource allocation schemes in Chapter 3 to the Gaussian Markov channel case and

derive necessary and sufficient stabilization conditions by utilizing the stability of a
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Markov jump linear system (MJLS) and the i.i.d. property of the sojourn time of

the Markov chain [38].

This chapter is organized as follows. The problem formulation and preliminaries are

given in Section 4.2. The existence of fundamental limitations for stabilization is

demonstrated in Section 4.3. Sufficient stabilization conditions for Gaussian finite-

state Markov channels and power constrained Markov lossy channels are provided

in Section 4.4 and Section 4.5, respectively. This chapter ends with some concluding

remarks in Section 4.6.

4.2 Problem Formulation and Preliminaries

This chapter studies the following discrete-time linear system

xt+1 = Axt +But + vt,

yt = Cxt + wt,
(4.1)

where xt ∈ Rn is the system state; yt ∈ Rp is the system output; ut ∈ R is the

control input; vt, wt are the process noise and measurement noise, respectively;

(A,B) is stabilizable; (C,A) is observable; {vt}t≥0 and {wt}t≥0 are i.i.d. and with

zero mean and bounded covariance matrices and are independent of the initial state

x0, which follows a zero mean Gaussian distribution with a bounded covariance

matrix. Without loss of generality, we make the following assumption as in [35,64].

Assumption 4.2.1. All the eigenvalues of A are either on or outside the unit circle.

This chapter considers a networked control setting, where yt is observed and encoded

with the law Et(·) and transmitted to the controller through a Gaussian Markov

channel to generate the control signal ut with the law Dt(·). The Markov channel

corrupted with Gaussian noises is modeled as

rt = γtst + ωt, (4.2)
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where st denotes the channel input satisfying an average power constraint, i.e.,

E {s2
t} ≤ P ; rt is the channel output; γt is the channel fading which represents the

variation of received signal power over time and ωt is an AWGN with zero-mean

and bounded variance σ2
ω. Different Markov models can be assumed for γt. In this

chapter, we are interested in two kinds of Gaussian Markov channels: the Gaussian

finite-state Markov channel and the power constrained Markov lossy channel.

Gaussian Finite-State Markov Channels: The channel state {γt}t≥0 is mod-

eled as a time-homogeneous ergodic Markov process. γt takes values in a finite set

of distinct non-negative values {r1, r2 . . . , rl}, which represents different fading lev-

els [113]. The Markov transition probability matrix Q is defined by Q = [qij] with

qij = Pr{γt+1 = rj|γt = ri}. (4.3)

Power Constrained Markov Lossy Channels: The channel state {γt}t≥0 is

modeled as a Markov lossy process. γt only switches between two states: the state

r1 = 0 and the state r2 = 1, where r1 = 0 indicates the appearance of channel

fading and the transmission fails and r2 = 1 means that the channel is free of fading

and the transmission is successful. Therefore, the Markov process has the following

transition probability matrix

Q =

1− q q

p 1− p

 , (4.4)

where p represents the failure rate and q denotes the recovery rate. To avoid any

trivial case, p and q are assumed to be strictly positive and less than 1, i.e., 0 <

p, q < 1, so that the Markov process is ergodic. The power constrained Markov

lossy channel is one special kind of Gaussian finite-state Markov channels and has

several unique properties that allow to derive refined results compared to Gaussian

finite-state Markov channels.

For both kinds of channels, we assume that {ωt}t≥0 is i.i.d.; x0, {vt}t≥0, {wt}t≥0,

{γt}t≥0 and {ωt}t≥0 are independent; the channel state information is known at
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the receiver side and the channel output and the channel state are fed back to the

transmitter through a noiseless feedback channel with one-step delay as in Chap-

ter 3. The feedback configuration and the information structure of the sensor and

controller are depicted in Figure 4.1.

xt+1 = Axt +But + vt, yt = Cxt + wt

Plant

st = Et(yt, rt−1, γt−1)

Sensor

ut = Dt(r
t, γt)

Controller

⊗⊕ γtωt
strt

ut yt

rt−1, γt−1

Figure 4.1: Networked control over Gaussian Markov channels

Throughout the chapter, a stochastic system with state xt is mean square stable

if supt E {x′txt} < ∞. We try to characterize requirements on Gaussian finite-state

Markov channels and power constrained Markov lossy channels such that there exist

coding and controlling strategies {Et(·)}t≥0, {Dt(·)}t≥0 which can stabilize the LTI

dynamics (4.1). In the following, we present several preliminary results that would

be used in the subsequent analysis.

4.2.1 Stability of Markov Jump Linear Systems

Denote the instantaneous channel capacity as ct = 1
2

ln(1 +
γ2
tP
σ2
ω

). Since {γt}t≥0 is

Markovian, so is {ct}t≥0 and ct takes values in a finite set {c1, . . . , cl} with ci =

1
2

ln(1+
r2iP
σ2
ω

) and is with the same Markov transition probability (4.3). Consider the

MJLS defined by

zt+1 = λ2e−
2
o
ctzt + a, (4.5)

where zt ∈ R with z0 < ∞; λ ∈ R; o ∈ N+; a ≥ 0 and {ct}t≥0 is the Markov

process described above. Let Ho = Q′Do with Do = diag(e−
2
o
c1 , . . . , e−

2
o
cl). Similar

to Lemma 1 in [40, 114], we have the following necessary and sufficient condition

characterizing the first moment stability of (4.5).
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Lemma 4.2.1. The first moment of the system (4.5) is stable, i.e., supt E {|zt|} <

∞, if and only if

λ2 <
1

ρ(Ho)
.

Remark 4.2.1. In this chapter, we are interested in the mean square stability of

linear systems. Since the mean square value of the linear system state conditioned on

the fading process evolves as a MJLS [38], to study the mean square stability of the

original system, we only need to study the first moment stability of the corresponding

MJLS.

4.2.2 Sojourn Times for Markov Lossy Process

Associated with the Markov lossy process {γt}t≥0, a stochastic time sequence {Tk}k≥0

is introduced to denote the time at which the transmission is successful. Without

loss of generality, let γ0 = r2 [37]. Then T0 = 0 and Tk, k ≥ 1 is precisely defined by

T1 = inf{k : k ≥ 1, γk = 1},

T2 = inf{k : k ≥ T1, γk = 1},
...

...

Tk = inf{k : k ≥ Tk−1, γk = 1}. (4.6)

By the ergodic property of the Markov process {γk}k≥0, Tk, ∀k ∈ N is finite almost

everywhere (abbreviated as a.e.). Thus, the integer valued sojourn time {T ∗k }k>0

which denotes the time duration between two successive successful transmissions is

well-defined a.e., where

T ∗k = Tk − Tk−1 > 0. (4.7)

Moreover, we have the following characterization of the probability distribution of

sojourn times {T ∗k }k>0.
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Lemma 4.2.2 ( [38]). The sojourn times {T ∗k }k>0 are i.i.d.. Furthermore, the

distribution of T ∗k is explicitly expressed as

Pr(T ∗k = i) =

1− p i = 1,

pq(1− q)i−2 i > 1.

4.3 Fundamental Limitation

Let λ1, . . . , λd denote the distinct unstable eigenvalues (if λi is complex, its conjugate

is excluded from this list) of A with |λ1| ≥ |λ2| ≥ . . . ≥ |λd|. Let mi represent the

algebraic multiplicity of λi. The real Jordan canonical form J of A then has form

that J = diag(J1, . . . , Jd) ∈ Rn×n [22], where Ji ∈ Rνi×νi and | det Ji| = |λi|νi , with

νi = mi if λi ∈ R, and νi = 2mi otherwise. It is clear that the mean square stability

of (4.1) is equivalent to the mean square stability of

xt+1 = Jxt +OBut +Ovt, (4.8)

yt = CO−1xt + wt, (4.9)

for some invertible matrix O.

The following theorem characterizes a fundamental limitation for mean square sta-

bilization over Gaussian finite-state Markov channels. The necessity is obtained via

an information theoretic argument as in Section 3.3, but with differences due to the

application of output feedback and the existence of process and measurement noises

and the correlated channel fading.

Theorem 4.3.1. There exist coding and controlling strategies {Et(·)}t≥0, {Dt(·)}t≥0,

such that the system (4.1) can be mean square stabilized over the Gaussian finite-

state Markov channel only if [|λ1|, . . . , |λd|]′ ∈ Rd satisfy

(
d∏
i=1

|λi|%ioi
) 2

o

<
1

ρ(Ho)
, (4.10)
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for all oi ∈ {0, . . . ,mi}, i = 1, . . . , d with o =
∑d

i=1 %ioi, where %i = 1 if λi ∈ R and

%i = 2 otherwise.

Proof. We use uppercase letters X ,R,Γ to denote random variables of the system

state, the channel output and the channel fading. We use the lowercase letters x, r, γ

to denote their realizations. Following a similar line of arguments as in the proof of

Lemma 3.3.1, we can show that

Nγt(Xt+1|Rt) ≥ (detA)
2
n e−

2
n
ctNγt−1(Xt|Rt−1). (4.11)

In view of Proposition II.1 in [62], a necessary condition to ensure the mean square

stability of Xt is that the first moment of Nγt(Xt+1|Rt) should converge to zero

asymptotically. Thus, the MJLS zk+1 = (detA)
2
n e−

2
n
ctzk should be stable in the first

moment. Following Lemma 4.2.1, a necessary condition to ensure the mean square

stability can be obtained as

(detA)
2
n <

1

ρ(Hn)
. (4.12)

Each block Ji has an invariant real subspace Aoi of dimension %ioi, for any oi ∈

{0, . . . ,mi}. Consider the subspace A formed by taking the product of Aoi , i =

1, . . . , d. The total dimension of A is
∑d

i=1 %ioi and the real Jordan form for the

dynamics in the subspace A is JV with | det JV | =
∏d

i=1 |λi|%ioi . Since (4.1) is mean

square stabilizable, the dynamics in the subspace A is also mean square stabilizable.

Following a similar line of arguments as in the derivation of (4.12), the fundamental

limitation (4.10) can be obtained.

Let δ = σ2
ω

P+σ2
ω

. We can derive the necessity for control over power constrained

Markov lossy channels from Theorem 4.3.1 directly. Firstly, the following lemma is

need.

Lemma 4.3.1. Let Q be defined in (4.4); D = [ 1 0
0 δ ] with 0 < q, p, δ < 1; λ ∈ R,

|λ| ≥ 1 and T ∗k be defined in (4.7). The following statements are equivalent,
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1.

λ2ρ(Q′D) < 1,

2.

E
{
λ2T ∗k

}
δ < 1,

3.

1− λ2(1− q) > 0, (4.13)

λ2δ

[
1 +

p(λ2 − 1)

1− λ2(1− q)

]
< 1. (4.14)

Proof. 2)↔3): In view of the probability distribution of T ∗k in Lemma 4.2.2, we have

E
{
λ2T ∗k

}
=
∞∑
i=1

Pr(T ∗k = i)λ2i

= Pr(T ∗k = 1)λ2 +
∞∑
i=2

Pr(T ∗k = i)λ2i

= (1− p)λ2 +
∞∑
i=2

pq(1− q)i−2λ2i.

To guarantee the boundedness of E
{
λ2T ∗k

}
, we should have λ2(1 − q) < 1. Then

E
{
λ2T ∗k

}
is

E
{
λ2T ∗k

}
= (1− p)λ2 +

pq

(1− q)2

(1− q)2λ4

1− λ2(1− q)

= λ2[1 +
p(λ2 − 1)

1− λ2(1− q)
].

Summarizing the above results, we have

E
{
λ2T ∗k

}
=

∞, if λ2(1− q) > 1

λ2
[
1 + p(λ2−1)

1−λ2(1−q)

]
, if λ2(1− q) < 1.

Then the equivalence of 2) and 3) is straightforward from the expression of E
{
λ2T ∗k

}
.
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1)→3): Let

H = Q′D =

1− q pδ

q (1− p)δ

 .
Since H is a nonnegative matrix, in view of Corollary 8.1.20 in [115], 1−q ≤ ρ(H) <

1
λ2 , which is (4.13). Suppose the two eigenvalues of H are ζ1 and ζ2, then ζ1 + ζ2 =

tr(H), ζ1ζ2 = det(H) with tr(H) = (1 − q) + (1 − p)δ and det(H) = (1 − p − q)δ.

Since

tr(H)2 − 4 det(H) = ((1− q) + (1− p)δ)2 − 4(1− p− q)δ

= ((1− q)− (1− p)δ)2 + 4pqδ > 0,

we know that the spectral radius of H is

ρ(H) =
tr(H) +

√
tr(H)2 − 4 det(H)

2
.

Since λ2ρ(H) < 1, we have that λ2
√

tr(H)2 − 4 det(H) < 2 − λ2tr(H). Taking

square of both sides, we obtain λ4 det(H) − λ2tr(H) + 1 > 0. Substituting the

expression of tr(H) and det(H) into the above inequality, we have λ4(1− q− p)δ−

λ2[(1−q)+(1−p)δ]+1 > 0, which implies λ2δ[(1−p)−λ2(1−p−q)] < 1−λ2(1−q).

Dividing both sides by 1− λ2(1− q), we can obtain (4.14).

3)→1): We first note that λ2δ < 1 from (4.14). In view of (4.13), we further have

2 − λ2tr(H) = 1 − λ2(1 − q) + 1 − λ2δ(1 − p) > 0. Then 3)→1) can be proved by

reversing the proof of 1)→3). The proof is completed.

The fundamental limitation for control over power constrained Markov lossy chan-

nels is stated below.

Theorem 4.3.2. There exist coding and controlling strategies {Et(·)}t≥0, {Dt(·)}t≥0,

such that the system (4.1) can be mean square stabilized over the power constrained
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Markov lossy channel only if [|λ1|, . . . , |λd|]′ ∈ Rd satisfy

1−

(
d∏
i=1

|λi|%ioi
) 2

o

(1− q) > 0, (4.15)

δ
1
o

(
d∏
i=1

|λi|%ioi
) 2

o

1 +
p(
(∏d

i=1 |λi|%ioi
) 2
o − 1)

1− (1− q)
(∏d

i=1 |λi|%ioi
) 2
o

 < 1, (4.16)

for all oi ∈ {0, . . . ,mi}, i = 1, . . . , d with o =
∑d

i=1 %ioi.

Proof. Since

Ho = Q′Do =

1− q p

q 1− p

1 0

0 δ
1
o

 ,
for power constrained Markov lossy channels, in view of Theorem 4.3.1 and Lemma 4.3.1,

the necessity can be obtained.

In the subsequent analysis, we will show that the necessary conditions in Theo-

rem 4.3.1 and Theorem 4.3.2 are also sufficient for scalar systems and certain high-

dimensional systems.

4.4 Stabilization over Finite-state Markov chan-

nels

In this section, we provide a sufficient stabilization condition for control over Gaus-

sian finite-state Markov channels via the construction of observer, estimator, con-

troller, channel encoder, decoder and scheduler. The observer/estimator/controller

is reproduced from [22,40], which mimics the optimal estimation and control scheme

in LQG control [67]. The channel encoder/decoder/scheduler design is borrowed

from Chapter 3, which adopts a TDMA scheme to transmit multiple sources over a

scalar channel.
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4.4.1 Communication Structure

The entire communication scheme is shown in Figure 4.2. The observer and estima-

tor can be regarded as the source encoder and decoder, which take the measurement

signal yt to estimate the system state x̂t. The channel encoder and decoder are de-

signed to reliably transmit source signals over the uncertain channel. Since the

observer/encoder is aware of the one-step delayed channel fading and channel out-

put via the feedback link, it can thus simulate the decoder/estimator/controller to

obtain the estimated state x̂t and the control input ut.

yt

Observer

x̄t

et = x̄t − x̂t
Encoder

st
Channel

rt
Decoder

êt

Estimator

x̂t

Controller

ut

x̂t

Figure 4.2: Communication structure

4.4.2 Observer/Estimator/Controller Design

The Luenberger observer is designed as

x̄t+1 = Ax̄t +But − L(yt − Cx̄t), (4.17)

where x̄0 = 0 and L is selected such that A+LC is Hurwitz. The estimator generates

the estimate x̂t with

x̂t+1 = Ax̂t + Aêt +But, (4.18)

where x̂0 = 0 and êt is the output of the channel decoder. The controller is given

by

ut = Kx̂t, (4.19)
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whereK is selected such thatA+BK is Hurwitz. With the above observer, estimator

and controller design, we have the following result.

Lemma 4.4.1. If there exists a pair of channel encoder and decoder, such that

supt E {‖et‖2} < ∞ with et = x̄t − x̂t, the system (4.1) is mean square stabilizable

over the Gaussian finite-state Markov channel with the designed communication

structure.

Proof. In view of (4.1) and (4.17), we have

xt+1 − x̄t+1 = (A+ LC)(xt − x̄t) + vt + Lwt. (4.20)

Since L is selected such that A + LC is stable, we have supt E {‖xt − x̄t‖2} < ∞.

From the observer dynamics (4.17) and the controller (4.19), we have

x̄t+1 = (A+BK)x̄t −BK(x̄t − x̂t)− L(yt − Cx̄t)

= (A+BK)x̄t −BK(x̄t − x̂t)− LC(xt − x̄t)− Lwt.

Since A + BK is Hurwitz and supt E {‖xt − x̄t‖2} < ∞, if supt E {‖et‖2} < ∞, we

have supt E {‖x̄t‖2} <∞. Therefore, we have

sup
t

E
{
‖xt‖2

}
= sup

t
E
{
‖xt − x̄t + x̄t‖2

}
≤ sup

t
E
{
‖xt − x̄t‖2

}
+ sup

t
E
{
‖x̄t‖2

}
<∞,

which implies that the original system (4.1) is mean square stable. The proof is

completed.

In view of the above lemma, we are now to design channel encoder/decoder to ensure

that supt E {‖et‖2} <∞. The dynamics for et is

et+1 = A(et − êt) + Φt, (4.21)
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where Φt = −LC(xt − x̄t)− Lwt.

From (4.20), we have that

xt − x̄t = (A+ LC)tx0 +
t−1∑
i=0

(A+ LC)t−1−i(vi + Lwi).

Since x0, {vt}t≥0, {wt}t≥0 are independent and with zero mean and bounded variance,

xt − x̄t and thus Φt are with zero mean and bounded variance.

Remark 4.4.1. Assumption 4.2.1 can be justified from Lemma 4.4.1. Assume A =

diag(Ju, Js), where Ju contains eigenvalues that are either on or outside the unit

circle and Js contains eigenvalues that are within the unit circle. Decompose the

dynamics (4.21) into stable part and unstable part according to A as

eu,t+1 = Jueu,t + Φu,t − Juêu,t, (4.22)

es,t+1 = Jses,t + Φs,t − Jsês,t, (4.23)

where eu,t, es,t,Φu,t,Φs,t, êu,t, ês,t are the corresponding partitions of et, Φt and êt.

Since Φt is mean square bounded, if we let ês,t = 0 at the decoder side, (4.23) is mean

square stable. Thus, we do not need to consider the transmission of the information

corresponding to stable eigenvalues. Therefore, we can ignore the eigenvalues that

are in the unit circle without loss of generality.

4.4.3 Encoder/Decoder/Scheduler Design

To transmit the n-dimensional vector et through the scalar channel, the TDMA

strategy is used. There are n encoder/decoder pairs to transmit the n sources

{e1,t, . . . , en,t} with ei,t being the i-th value of et and a scheduler to multiplex the

channel use. Suppose at time t, the i-th encoder/decoder pair is scheduled to use

the channel. The encoder i first generates a symbol si,t, which is a scaled version

of ei,t to satisfy the channel input power constraint, and transmits it to the decoder

through the communication channel. The decoder i then forms the minimal mean
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square error estimate êi,t based on the channel output ri,t. The estimator maintains

an array êt = [ê1,t, . . . , ên,t]
′ that represents the estimate of et, which is set to 0 at

t = 0. When the information about ei,t is transmitted, only êi,t is updated at the

estimator side. The channel encoder/decoder/scheduler structure is illustrated in

Figure 4.3.

e1,t
Encoder 1

s1,t

e2,t
Encoder 2

s2,t

...
en,t

Encoder n
Scheduler

r1,t
Decoder 1

ê1,t

r2,t
Decoder 2

ê2,t

...

Decoder n
ên,t

Figure 4.3: Channel encoder/decoder/scheduler structure

If at time t, the encoder i is scheduled to use the channel, then the encoder generates

si,0 = 0, si,t =

√
P

σ2
ei,t

ei,t, t ≥ 1, (4.24)

where σ2
ei,t

represents the variance of ei,t. The decoder i satisfies

êi,t =
Eγt{ri,tei,t}
Eγt{r2

i,t}
ri,t. (4.25)

It is clear from (4.21) and the designed communication scheme that E {et} = 0 and

E {êt} = 0.

The scheduling Algorithm 4.1 is designed, which adopts a TDMA strategy and allo-

cates a fixed transmission period to each encoder/decoder pair, where τi, i = 1, . . . , n

are scheduler parameters to be specified later. We assume that both the encoder

and the decoder know the scheduling algorithm. Since the switching among trans-

missions is only determined by time, we do not need to consider the coordination

among encoders and decoders.
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Algorithm 4.1: TDMA Scheduler for Gaussian Finite-state Markov Channels

In the k-th round of transmissions

• The first encoder/decoder pair is scheduled to use the channel for τ1 times.

• . . .

• The j-th encoder/decoder pair is scheduled to use the channel for τj times.

• . . .

• The n-th encoder/decoder pair is scheduled to use the channel for τn times.

• Repeat this process.

4.4.4 Sufficient Stabilizability Conditions

Theorem 4.4.1. If
d∏
i=1

|λi|2νi <
1

ρ(H1)
, (4.26)

there exist τi, i = 1, . . . , n, such that the system (4.1) can be mean square stabilized

over the Gaussian finite-state Markov channel with the proposed TDMA communi-

cation scheme.

In view of Lemma 4.4.1, if (4.21) is mean square stable, the system (4.1) can be

mean square stabilized over the Gaussian finite-state Markov channel. Thus, the

key in proving Theorem 4.4.1 is to show that there exist τis such that (4.21) is mean

square stable. Moreover, with the designed TDMA communication scheme, we can

show that each subsystem in (4.21) is described by a MJLS. If (4.26) holds, we have

that |λi|
2
∑
j ln |λj |

ln |λi| ρ(H1) < 1, for i = 1, . . . , n (for the case that λ1, . . . , λd are real

and mi = νi = 1). If τi is selected such that τi∑
j τj

= ln |λi|∑
j ln |λj | , the MJLS is stable,

which further implies the mean square stability of (4.21). Then the original system

is mean square stable. The detailed proof is provided as below.

Proof. Without loss of generality, we assume that λ1, . . . , λd are real and mi = νi =

1. For other cases, the theorem can be proved by combining the following analysis

with a similar line of arguments used in [116].

Nanyang Technological University Singapore



68 4.4. STABILIZATION OVER FINITE-STATE MARKOV CHANNELS

In the first step, we shall derive the dynamics for the mean square value of ei,t.

From (4.21), we obtain

ei,t+1 = λi(ei,t − êi,t) + Φi,t. (4.27)

Analogous to the analysis in [110], we can show that with the encoder (4.24) and

the decoder (4.25),

Eγt+1{e2
i,t+1} = λ2

i e
−2ctEγt{e2

i,t}+ E
{

Φ2
i,t

}
, (4.28)

if the i-th encoder/decoder pair is scheduled to use the channel at time t. Let

τ =
∑n

i=1 τi and ηi,kτ = E{e2
1,kτ |γkτ = ri}Pr(γkτ = ri). Since from time kτ + 1

to kτ + τ1, the first encoder/decoder pair is scheduled to use the channel from

Algorithm 4.1, we have that

ηj,kτ+1 = E
{
e2

1,kτ+1|γkτ+1 = rj
}

Pr(γkτ+1 = rj)

=
l∑

i=1

Pr(γkτ = ri|γkτ+1 = rj)Pr(γkτ+1 = rj)× E
{
e2

1,kτ+1|γkτ+1 = rj, γkτ = ri
}

(a)
=

l∑
i=1

Pr(γkτ+1 = rj|γkτ = ri)Pr(γkτ = ri)× E
{
e2

1,kτ+1|γkτ+1 = rj, γkτ = ri
}

(b)
=

l∑
i=1

qijPr(γkτ = ri)E
{
e2

1,kτ+1|γkτ = ri
}

(c)

≤
l∑

i=1

qijPr(γkτ = ri)
λ2

1

e2ci
E
{
e2

1,kτ |γkτ = ri
}

+ E
{

Φ2
1,kτ

}
=

l∑
i=1

λ2
1

e2ci
qijηi,kτ + E

{
Φ2

1,kτ

}
,

where (a) follows from the Bayes law; (b) is due to the fact that e1,kτ+1 is independent

of γkτ+1 and (c) arises from (4.28). Let ηkτ = [η1,kτ , η2,kτ , . . . , ηl,kτ ]
′, then we have

ηkτ+1 ≤ λ2
1Q
′D1ηkτ + 1E

{
Φ2

1,kτ

}
, where 1 is a vector with all elements being one.
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With similar derivations we have that

ηkτ+τ1 ≤ λ2τ1
1 Hτ1

1 ηkτ +

τ1−1∑
i=0

(λ2
1H1)τ1−1−i1E

{
Φ2

1,kτ+i

}
. (4.29)

Since from the time kτ + τ1 + 1 to (k + 1)τ , there are no scheduled transmissions

for the first encoder/decoder pair, similar to the derivation of (4.29), we have

η(k+1)τ ≤ λ
2(τ−τ1)
1 (Q′)τ−τ1ηkτ+τ1 +

τ−τ1−1∑
i=0

(λ2Q′)τ−τ1−1−i1E
{

Φ2
1,kτ+τ1+i

}
. (4.30)

Combining (4.29) and (4.30), we have that

η(k+1)τ ≤ λ2τ
1 (Q′)τ−τ1Hτ1

1 ηkτ + Ψkτ , (4.31)

where

Ψkτ = λ
2(τ−τ1)
1 (Q′)τ−τ1

τ1−1∑
i=0

(λ2
1H1)τ1−1−i1E

{
Φ2

1,kτ+i

}
+

τ−τ1−1∑
i=0

(λ2Q′)τ−τ1−1−i1E
{

Φ2
1,kτ+τ1+i

}
and Ψkτ is bounded.

In the second step, we will show that if the sufficient condition (4.26) is satisfied,

there exist τis such that (4.31) is mean square stable.

If (4.26) holds, we have ln ρ(H1) + 2
∑

j ln |λj| < 0. Therefore, there exists ς > 0,

such that ln ρ(H1) + 2
∑

j ln |λj|+ ς = 0, which also implies 2 ln |λi|+ αi ln ρ(H1) =

− ς
n
< 0, with αi =

2 ln |λi|+ ς
n

2
∑
j ln |λj |+ς > 0 and

∑
i αi = 1. Thus, we have λ2

i ρ(H1)αi < 1

for all i = 1, . . . , n. Let ι = mini(2logρ(H1)|λi| + αi) > 0. Since for every αi ∈ R,

there exists a rational sequence {βi,k}k≥0, such that limk→∞ βi,k = αi, we have

limk→∞
βi,k∑
j βj,k

= αi∑
j αj

= αi. Therefore, for the given ι, there exists M ∈ N+, such

that | βi,M∑
j βj,M

−αi| < ι. Let ϑi =
∑
j βj,M

βi,M
. Then ϑ−1

i > αi− ι ≥ −2logρ(H1)|λi|. Thus,

we have λ2ϑi
i ρ(H1) < 1.
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In view of Lemma 5.6.10 in [115], there exists a norm ‖·‖ such that κi := ‖λ2ϑi
i H1‖ <

1. From the equivalence of norms, we have that ‖ · ‖ ≤ ε‖ · ‖1 for some ε > 1. Then

τi ∈ N+ is selected to satisfy that τi > − logκi ε and βi,M = τi
τ̄

for all i = 1, . . . , n and

for some τ̄ . The existence of such τis can always be guaranteed by firstly writing

rational numbers βi,Ms into fractions and then reducing fractions to a common

denominator and finally scaling the numerators and denominators simultaneously

to obtain a sufficiently large numerator τi which satisfies τi > − logκi ε.

Then we have from (4.31) that

‖η(k+1)τ‖ ≤ ‖(Q′)τ−τ1‖‖λ2τ
1 H

τ1
1 ‖‖ηkτ‖+ ‖Ψkτ‖

≤ κτ11 ‖(Q′)τ−τ1‖‖ηkτ‖+ ‖Ψkτ‖

≤κτ11 ε‖(Q′)τ−τ1‖1‖ηkτ‖+ ‖Ψkτ‖

≤ κτ11 ε‖ηkτ‖+ ‖Ψkτ‖.

Since κτ11 ε < 1, we know that ‖ηkτ‖ is mean square bounded. Since E
{
e2

1,kτ

}
=∑l

i ηi,kτ , we further have that E
{
e2

1,kτ

}
is mean square bounded.

Similarly, we can also prove that supk E
{
e2
i,kτ

}
<∞ for all i = 2, . . . , n. Therefore,

et is mean square bounded. In view of Lemma 4.4.1, the closed-loop system is mean

square stable. The proof is completed.

Remark 4.4.2. Suppose qij = qj for i, j = 1, . . . , l, then the Gaussian finite-state

Markov channel degenerates to the power constrained fading channel with finite i.i.d.

channel states. The stabilization condition in Theorem 4.4.1 becomes

d∏
i=1

|λi|2νi(
l∑

i=1

qi
σ2
ω

σ2
ω + r2

iP
) < 1,

which coincides with Theorem 3.4.3.

The sufficient condition is also necessary for scalar systems as shown in the following

corollary.
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Corollary 4.4.1. Suppose A = λ1 with λ1 ∈ R and |λ1| ≥ 1. There exist coding

and controlling strategies {Et(·)}t≥0, {Dt(·)}t≥0, such that the system (4.1) can be

mean square stabilized over the Gaussian finite-state Markov channel if and only if

λ2
1 <

1

ρ(H1)
.

Generally, there exists a gap between the necessity (4.10) and the sufficiency (4.26)

for high dimensional systems. In the next section, we will study power constrained

Markov lossy channels and derive improved results.

4.5 Stabilization over Markov Lossy Channels

In this section, by utilizing the properties of the Markov lossy process, we propose

communication scheduling algorithms for power constrained Markov lossy channels

and show that they can achieve larger stabilizability regions than that with the

TDMA scheduler. We first start with two-dimensional systems.

4.5.1 Two-dimensional Systems

The necessary and sufficient condition to ensure the mean square stabilizability for

two-dimensional systems controlled over power constrained Markov lossy channels

is stated in the following theorem.

Theorem 4.5.1. Suppose n = 2. There exist coding and controlling strategies

{Et(·)}t≥0, {Dt(·)}t≥0, such that the system (4.1) can be mean square stabilized over

the power constrained Markov lossy channel if and only if (4.15) and (4.16) hold.

For the case of two-dimensional systems with eigenvalues of equal magnitude, the

communication scheme designed in Section 4.5.2 is shown to be optimal (in the

sense that it achieves the largest stabilizability region indicated by the necessary
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condition in Theorem 4.3.2); see Corollary 4.5.1. In this subsection, we only provide

the optimal communication scheme for two-dimensional systems with eigenvalues

having different magnitudes, i.e., A =
[
λ1 0
0 λ2

]
with λ1, λ2 ∈ R and |λ1| > |λ2| ≥ 1.

In view of Theorem 4.5.1, we only need to prove that the following conditions are

sufficient

(1− q)λ2
1 < 1, (4.32)

δλ2
1

[
1 +

p(λ2
1 − 1)

1− (1− q)λ2
1

]
< 1, (4.33)

δ
1
2 |λ1λ2|

[
1 +

p(|λ1λ2| − 1)

1− (1− q)|λ1λ2|

]
< 1. (4.34)

Remark 4.5.1. A small δ, a large q and a small p are always preferred, which

correspond to a more reliable channel, and thus can tolerate more unstable systems.

This is confirmed from (4.32) (4.33) and (4.34).

4.5.1.1 Optimal Scheduler Design

The communication structure is designed similarly as in Section 4.4 with the same

observer/estimator/controller design and the channel encoder/decoder design.

The scheduling Algorithm 4.2 is then proposed, where φ = 2 ln |λ1|−ln |λ2|
ln δ

and τ1 is

the scheduler parameter to be specified later. Since the switching among trans-

missions in Algorithm 4.2 relies on the channel state information, which is known

to the decoder and the encoder via the channel feedback, we do not need to con-

sider the coordination among encoders and decoders. Algorithm 4.2 is based on the

optimal scheduling algorithm for control over power constrained lossy channels in

Section 3.4.2, where it is shown that such allocation of channel resources is optimal

for the stabilization of two-dimensional systems with i.i.d. channel states. Even

though the channel state {γt}t≥0 is correlated over time for the power constrained

Markov lossy channel, the sojourn time {T ∗k }k>0 is i.i.d.. We may study the chan-

nel from the perspective of the i.i.d. sojourn time sequence and expect that the

Algorithm 4.2 is optimal as well.
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Algorithm 4.2: Chasing and Optimal Stopping Scheduler for Power Con-
strained Markov Lossy Channels

In the k-th round,

• The first encoder/decoder pair is scheduled to use the channel until the
transmissions succeed for τ1 times. Denote the time period to achieve this
object as T 1

k .

• – If
T 1
k < −

τ1

φ
, (4.35)

the second encoder/decoder pair is scheduled to use the channel until
the transmissions succeed for τ2,k times with

τ2,k > τ1 + (T 1
k + T 2

k )φ, (4.36)

where T 2
k denotes the minimal period of achieving this object.

– Otherwise, set T 2
k = 0 and do not conduct any transmissions.

• Repeat.

The right hand side of (4.36) is the requirement on the minimal successful trans-

mission numbers τ2,k. Even if transmissions fail consecutively, since τ1 + (T 1
k + t)φ is

diminishing with time t, the stopping condition (4.36) would be satisfied eventually,

which means T 2
k is bounded. To make notions clear, we plot the scheduled trans-

missions and the first round transmission in Figure 4.4 and Figure 4.5, respectively,

where the definitions of Tk, T
∗
k , T

1
k , T

2
k and the new symbols T̄k, Ťk are summarized in

Table 4.1. It is clear from Algorithm 4.2 that T̄i and T̄j are i.i.d.; T 2
i is independent

of T 2
j for any i 6= j. Besides, we have T 1

1 = T ∗1 + . . .+T ∗τ1 , T 2
1 = T ∗τ1+1 + . . .+T ∗τ1+τ2,1

.

T̄1

T1
1 T2

1

Ť0 = 0 Ť1
· · ·

T̄kŤk−1 Ťk

T1
k T2

k

· · · t

Figure 4.4: Scheduled transmissions with Algorithm 4.2
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Tk, k ≥ 0
the time when the transmission is successful as defined
in (4.6)

T ∗k , k ≥ 1
time duration between two successive successful trans-
missions as defined in (4.7)

T 1
k , k ≥ 1

the period to transmit the first encoder/decoder pair in
the k-th round transmission

T 2
k , k ≥ 1

the period to transmit the second encoder/decoder pair
in the k-th round transmission

T̄k, k ≥ 1
the total time to complete the k-th round of transmis-
sions, i.e., T̄k = T 1

k + T 2
k

Ťk, k ≥ 0
the time when k rounds of transmissions are completed,
i.e., Ťk =

∑k
j=1 T̄j

Table 4.1: Lists of transmission related definitions

t
Ť0

T∗
1

T1

T∗
2

T2

· · ·
T∗
τ1

Tτ1

T1
1

T∗
τ1+1

Tτ1+1

T∗
τ1+2

Tτ1+2

· · ·
T∗
τ1+τ2,1

T2
1

Tτ1+τ2,1

Figure 4.5: The first round transmission with Algorithm 4.2

4.5.1.2 Scheduler Parameter Selection

If (4.32) holds, we have

E
{
λ

2T ∗1
1

}
= λ2

1[1 +
p(λ2

1 − 1)

1− (1− q)λ2
1

] > 1.

Since (1− q)|λ1λ2| < 1 from (4.32), if (4.34) holds, we have

δ
1
2E
{
|λ1λ2|T

∗
1
}

= δ
1
2 |λ1λ2|[1 +

p(|λ1λ2| − 1)

1− (1− q)|λ1λ2|
] < 1.

Since E{eθ+bT ∗1 } with b = 2 ln |λ1| − φθ is increasing in θ; when θ = 0, E{eθ+bT ∗1 } =

E{λ2T ∗1
1 } > 1 and when θ = 1

2
ln δ, E{eθ+bT ∗1 } = δ

1
2E{|λ1λ2|T

∗
1 } < 1, we know that

there exists θ∗ with 1
2

ln δ < θ∗ < 0, such that

E
{
eθ
∗+bT ∗1

}
= 1. (4.37)
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The scheduler parameter τ1 is then selected to satisfy

τ1 > max

−2 ln 2 + θ∗(1− φ)

ln δ − 2θ∗
,

− ln 2

ln
(
δλ2

1[1 +
p(λ2

1−1)

1−(1−q)λ2
1
]
)
 . (4.38)

4.5.1.3 Sufficiency Proof of Theorem 4.5.1

Denote the event T 1
1 < − τ1

φ
as ξ. Let Bt =

∑t
i=T 1

1 +1 γi and Yt = eθ
∗Bt+bt, t ≥ T 1

1 + 1.

For k > τ1, we have

Eξ
{
YTk |YTk−1

, . . . , YTτ1
}

= YTk−1
Eξ
{
e
θ∗

∑Tk
t=Tk−1+1 γt+bT

∗
k

}
= YTk−1

Eξ
{
eθ
∗+bT ∗k

} (a)
= YTk−1

,

where (a) follows from the fact that {T ∗k }k>0 are i.i.d. and (4.37). Thus, YTk is a

martingale in k > τ1. Then in view of the optional stopping theorem [109], we

have E{YTτ1+τ2,1
} = E{YTτ1+1} = 1. However, by our stopping condition (4.36),

we know that BTτ1+τ2,1
= τ2,1 = τ1 + (T 1

1 + T 2
1 )φ + c for some c ≥ 0. Therefore,

Eξ
{
YTτ1+τ2,1

}
= Eξ

{
eθ
∗τ1+θ∗φ(T 1

1 +T 2
1 )+θ∗c+bT 2

1

}
= 1, which implies that

Eξ
{
e(θ∗φ+b)T 2

1

}
= Eξ

{
λ

2T 2
1

1

}
= e−θ

∗τ1−θ∗φT 1
1−θ∗c. (4.39)

We then show that c is bounded. If at time Ť1, the transmission is successful, then

τ2,1 − 1 ≤ τ1 + (Ť1 − 1)φ since the stopping condition (4.36) is not satisfied at time

Ť1−1. In the consideration that c = τ2,1−τ1− Ť1φ, we have an upper bound for c as

c ≤ 1− φ. Similarly, if at time Ť1, the transmission fails, then τ2,1 ≤ τ1 + (Ť1− 1)φ.

An upper bound for c is therefore given by c ≤ −φ. Thus, in general, an upper

bound for c can be given by c ≤ 1− φ.

Since θ∗ > 1
2

ln δ, 1 − θ∗

ln δ
> 0, which means 2 ln |λ1| − 2 ln |λ2| − θ∗φ > 0. When

T 1
1 ≥ − τ1

φ
, we further have T 1

1 (2 ln |λ1| − 2 ln |λ2| − θ∗φ) > θ∗τ1 − τ1 ln δ + θ∗c −

ln 2. With some manipulations, we can show that when T 1
1 ≥ − τ1

φ
, Ω := λ

2T 1
1

2 −

2λ
2T 1

1
1 e−θ

∗τ1−θ∗φT 1
1−θ∗cδτ1 < 0.
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Denote the event that T 1
1 ≥ − τ1

φ
as ψ. In view of the conditional expectation, we

have

E{λ2T̄1
1 δτ1 + λ2T̄1

2 δτ2,1} = E{Eξ{λ2T̄1
1 δτ1 + λ2T̄1

2 δτ2,1}}+ E{Eψ{λ2T̄1
1 δτ1 + λ2T̄1

2 δτ2,1}}
(a)

≤ E{Eξ{2λ2T̄1
1 δτ1}}+ E{Eψ{λ

2T 1
1

1 δτ1 + λ
2T 1

1
2 }}

(b)
= E{Eξ{2λ

2T 1
1

1 e−θ
∗τ1−θ∗φT 1

1−θ∗cδτ1}}+ E{Eψ{λ
2T 1

1
1 δτ1 + λ

2T 1
1

2 }}

≤ E{2λ2T 1
1

1 e−θ
∗τ1−θ∗φT 1

1−θ∗cδτ1}+ E{Eψ{λ
2T 1

1
1 δτ1 + Ω}}

(c)

≤ E{2λ2T 1
1

1 e−θ
∗τ1−θ∗φT 1

1−θ∗cδτ1}+ E{λ2T 1
1

1 δτ1}, (4.40)

where (a) follows from (4.35) and (4.36); (b) follows from (4.39) and (c) is due to

the fact that when T 1
1 ≥ − τ1

φ
, Ω < 0. Since

E
{

2λ
2T 1

1
1 e−θ

∗τ1−θ∗φT 1
1−θ∗cδτ1

} (a)

≤ 2δτ1e−θ
∗τ1−θ∗(1−φ)E

{
ebT

1
1

}
= 2δτ1e−θ

∗τ1−θ∗(1−φ)E
{
ebT
∗
1
}τ1

(b)
= 2e−θ

∗(1−φ)(δe−2θ∗)τ1 ,

where (a) follows from the fact that c ≤ 1− φ; (b) follows from (4.37), we have

E
{
λ2T̄1

1 δτ1 + λ2T̄1
2 δτ2,1

}
≤ 2e−θ

∗(1−φ)(δe−2θ∗)τ1 + E
{
λ

2T ∗1
1 δ

}τ1
= 2e−θ

∗(1−φ)(δe−2θ∗)τ1 +

(
δλ2

1[1 +
p(λ2

1 − 1)

1− (1− q)λ2
1

]

)τ1
.

Since δe−2θ∗ < 1, if (4.33) holds and τ1 is selected to satisfy (4.38), we have

E{λ2T̄1
1 δτ1 + λ2T̄1

2 δτ2,1} < 1, which further ensures

E
{
λ2T̄1

1 δτ1
}
< 1, E

{
λ2T̄1

2 δτ2,1
}
< 1. (4.41)

Next, we will show that the randomly sampled sequence E
{
e2

1,Ťk

}
, k ≥ 0 is mean

square bounded. Conditioned on the sequence {γŤk−1
, γŤk−1+1, . . . , γŤk−1+T̄k

} and
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from (4.28), we have

E
{
e2

1,Ťk

}
= E

{
e2

1,Ťk−1+T̄k

}
=

T̄k−1∏
j=0

λ2
1δ
γŤk−1+jE

{
e2

1,Ťk−1

}
+

T̄k−1∑
i=0

T̄k−1∏
j=i+1

λ2
1δ
γŤk−1+jE

{
Φ2

1,Ťk−1+i

}

= λ2T̄k
1 δτ1E

{
e2

1,Ťk−1

}
+

T̄k−1∑
i=0

T̄k−1∏
j=i+1

λ2
1δ
γŤk−1+jE

{
Φ2

1,Ťk−1+i

}
(a)

≤ λ2T̄k
1 δτ1E

{
e2

1,Ťk−1

}
+

T̄k−1∑
i=0

λ
2(T̄k−i−1)
1 E

{
Φ2

1,Ťk−1+i

}
≤ λ2T̄k

1 δτ1E
{
e2

1,Ťk−1

}
+ sup

t
E
{

Φ2
1,t

} T̄k−1∑
i=0

λ
2(T̄k−i−1)
1

≤ λ2T̄k
1 δτ1E

{
e2

1,Ťk−1

}
+ sup

t
E
{

Φ2
1,t

} λ2(T̄k−1)
1 − λ−2

1

1− λ−2
1

,

where (a) follows from the fact that δγk ≤ 1 for any k. Thus, we have that

E
{
e2

1,Ťk

}
≤ E

{
λ2T̄k

1 δτ1
}
E
{
e2

1,Ťk−1

}
+ sup

t
E
{

Φ2
1,t

}
E

{
λ

2(T̄k−1)
1 − λ−2

1

1− λ−2
1

}
. (4.42)

Since {T̄k}k≥1 are i.i.d., we have E{λ2T̄k
1 δτ1} < 1 and supt E{Φ2

1,t}E{
λ

2(T̄k−1)
1 −λ−2

1

1−λ−2
1

}

is bounded from (4.41), then the randomly sampled sequences E
{
e2

1,Ťk

}
, k ≥ 0 is

bounded from (4.42). Similarly, we can also prove that E
{
e2

2,Ťk

}
, k ≥ 0 is bounded.

For any t, there must exist k such that t ∈ [Ťk, Ťk+1]. Thus, conditioned on the

lossy process {γt}t≥0, we obtain that for i = 1, 2

E
{
e2
i,t

}
=

t−1∏
j=Ťk

λ2
i δ
γjE
{
e2
i,Ťk

}
+

t−Ťk−1∑
i=0

t−1∏
j=Ťk+i+1

λ2
i δ
γjE
{

Φ2
i,Ťk+i

}

≤ λ2(t−Ťk−1)E
{
e2
i,Ťk

}
+ sup

t
E
{

Φ2
i,t

} λ2(t−Ťk−1)
i − λ−2

i

1− λ−2
i

≤ λ2(Ťk+1−Ťk−1)E
{
e2
i,Ťk

}
+ sup

t
E
{

Φ2
i,t

} λ2(Ťk+1−Ťk−1)
i − λ−2

i

1− λ−2
i

≤ λ2(T̄k−1)E
{
e2
i,Ťk

}
+ sup

t
E
{

Φ2
i,t

} λ2(T̄k−1)
i − λ−2

i

1− λ−2
i

.
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Thus, we have

E
{
e2
i,t

}
≤ E

{
λ2(T̄k−1)

}
E
{
e2
i,T̂k

}
+ sup

t
E
{

Φ2
i,t

}
E

{
λ

2(T̄k−1)
i − λ−2

i

1− λ−2
i

}
.

Since E
{
λ2T̄k
i

}
and E

{
e2
i,T̂k

}
are bounded, we know that E

{
e2
i,t

}
is bounded. In

view of Lemma 4.4.1, the sufficiency is proved. �

4.5.2 High-dimensional Systems

The key difficulty in stabilizing multi-dimensional systems over fading channels is

to optimally allocate channel resources among different sub-dynamics. We can show

that the desired optimal allocation is determined by the magnitudes of eigenvalues

and the realization of the channel fading. To optimally schedule the current trans-

mission, we need to know the future fading realizations as shown in Section 3.4.3,

which is not available due to the casualty constraint. For two-dimensional sys-

tems, we can adopt Algorithm 4.2 to overcome this problem, which first allocates

a constant amount of channel resources to the first sub-dynamics and then opti-

mally stops the transmissions for the second sub-dynamics. But this method is not

applicable to three or higher dimensional systems since to optimally stop the trans-

missions for the second or subsequent sub-dynamics, we need the information of the

channel fading realizations from the future transmissions for all the sub-dynamics,

which is not possible due to the causal availability of the channel state information.

In this subsection, an adaptive TDMA scheduling algorithm is proposed for high-

dimensional systems, which is adaptive to the lossy process and outperforms the

scheduling Algorithm 4.1 as shown later. The adaptive TDMA scheduler is stated

in Algorithm 4.3, where τ1, . . . , τn are scheduler parameters to be specified later.

Let T ik denote the period for the i-th encoder/decoder pair to achieve τi successful

transmissions in the k-th round and define T̄k, Ťk analogously as in Section 4.5.1.

The scheduled transmissions with Algorithm 4.3 is depicted in Figure 4.6. It is clear
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Algorithm 4.3: Adaptive TDMA scheduler for Power Constrained Markov
Lossy Channels

• The first encoder/decoder pair is scheduled to use the channel, until the
transmissions succeed for τ1 times.

• The second encoder/decoder pair is scheduled to use the channel, until the
transmissions succeed for τ2 times.

• . . .

• The n-th encoder/decoder pair is scheduled to use the channel, until the
transmissions succeed for τn times.

• Repeat.

t. . .
T̄1 T̄k

T1
1 T2

1

· · ·
Tn1 T1

k T2
k

· · ·
Tnk

· · ·

Figure 4.6: Transmissions with the adaptive TDMA scheduler

that T ik is independent of T jk , and T̄i and T̄j are i.i.d. for any i 6= j. A sufficient

stabilizability result with Algorithm 4.3 is stated in the following theorem.

Theorem 4.5.2. There exist coding and controlling strategies {Et(·)}t≥0, {Dt(·)}t≥0,

such that the system (4.1) can be mean square stabilized over the power constrained

Markov lossy channel, if there exist αi, i = 1, . . . , d with 0 < αi ≤ 1 and
∑d

i=1 αi = 1

such that

(1− q)|λ1|2 < 1, (4.43)

δ
αi
νi |λi|2[1 +

p(|λi|2 − 1)

1− (1− q)|λi|2
] < 1, (4.44)

for all i = 1, . . . , d.

Proof. Here we only consider the case that λ1, . . . , λd are real and mi = ν1 = 1. We

can easily extend the analysis to other cases by combining the following analysis with

similar arguments used in [116]. In view of Lemma 4.3.1, the sufficient condition in
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Theorem 4.5.2 is equivalent to the following condition

E
{
λ

2T ∗1
i

}
δαi < 1, i = 1, . . . , n. (4.45)

Let ι = mini(logδ E
{
λ

2T ∗1
i

}
+ αi). For any αi, there exists a rational sequence

{βi,k}k≥0, such that limk→∞ βi,k = αi. Then limk→∞
βi,k∑
j βj,k

= αi∑
j αj

= αi. Therefore,

for the given ι, there exists M ∈ N+, such that | βi,M∑
j βj,M

−αi| < ι for all i = 1, . . . , n.

Thus,
βi,M∑
j βj,M

> αi − ι ≥ − logδ E
{
λ

2T ∗1
i

}
, which implies

E
{
λ

2T ∗1
i

}
δ

βi,M∑
j βj,M < 1, i = 1, . . . , n.

Since β1,M , . . . , βn,M are rational, there exist integers τ1, . . . , τn, τ̄ such that βi,M = τi
τ̄

and E
{
λ

2T ∗1
i

}
δ

τi∑
j τj < 1 for i = 1, . . . , n, which implies

E
{
λ2T̄1
i δτi

}
= E

{
λ

2T ∗1
i

}τ1+...+τn
δτi < 1.

Similar to the proof of Theorem 4.5.1, we can show that the sampled sequence

E
{
e2
i,Ťk

}
is bounded, and further E

{
e2
i,t

}
is bounded. In view of Lemma 4.4.1, the

sufficiency is proved.

Remark 4.5.2. In view of Lemma 4.3.1, Theorem 4.5.2 can be equivalently stated

as: if there exist αis with 0 < αi ≤ 1 and
∑d

i=1 αi = 1, such that

E
{
λ

2T ∗1
i

} νi
αi δ < 1, (4.46)

for i = 1, . . . , d, the system is mean square stabilizable. Then the existence of αis in

Theorem 4.5.2 can be determined as follows. Let α∗i = −νi logδ E
{
λ

2T ∗1
i

}
, which is

the lower bound for any feasible αi from (4.46). If
∑

i α
∗
i > 1, there are no feasible

αis. Otherwise, one admissible αi is given by αi =
α∗i∑
j α
∗
j
.

Remark 4.5.3. Theorem 4.4.1 can be equivalently expressed as: if there exist αis

Nanyang Technological University Singapore



4.5. STABILIZATION OVER MARKOV LOSSY CHANNELS 81

with 0 < αi ≤ 1 and
∑d

i=1 αi = 1, such that

λ
2νi
αi
i ρ(Q′D1) < 1, (4.47)

for i = 1, . . . , d, the system is mean square stabilizable. For power constrained

Markov lossy channels, in view of Lemma 4.3.1, (4.47) is equivalent to

E
{
λ
νi
αi

2T ∗1
i

}
δ < 1. (4.48)

Since E
{
λ

2T ∗1
i

} νi
αi ≤ E

{
λ
νi
αi

2T ∗1
i

}
from Jensen’s inequality, any λi that satisfies (4.48),

must also satisfy (4.46). Thus, the adaptive TDMA scheduler outperforms the

TDMA scheduler in the sense that it can tolerate more unstable systems.

When all the strictly unstable eigenvalues have the same magnitude, the sufficient

condition in Theorem 4.5.2 coincides with the necessary condition in Theorem 4.3.2,

as shown in the following corollary.

Corollary 4.5.1. Suppose |λ1| = · · · = |λdu| = λ̃ > 1 and |λdu+1| = · · · = |λd| =

1 with 1 ≤ du ≤ d. There exists an encoder/decoder pair {Et(·)}t≥0, {Dt(·)}t≥0,

such that the system (4.1) can be mean square stabilized over the power constrained

Markov lossy channel if and only if

(1− q)λ̄2 < 1,

δ
1

ν1+...+νdu λ̄2[1 +
p(λ̄2 − 1)

1− (1− q)λ̄2
] < 1.

Remark 4.5.4. As an application of the derived theorems, we have the following

extensions.

• When p = 0, q = 1, the power constrained Markov lossy channel degenerates

to the AWGN channel, a necessary and sufficient condition to ensure mean

square stabilizability from Theorem 4.3.2 and Theorem 4.5.2 is
∑

i νi ln |λi| <
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1
2

ln(1 + P
σ2
ω

), which coincides with the stabilizability condition over AWGN

channels in [61, 62].

• If p = 1− q, we can obtain the stabilizability condition over power constrained

lossy channels [110]. We can show that Theorem 4.3.2, Theorem 4.5.1 and

Theorem 4.5.2 recover Lemma 1, Theorem 2 and Theorem 1 in [110], respec-

tively.

• For the power constrained Markov lossy channel, taking the limit P → ∞,

σ2
ω → 0, we obtain the stabilizability condition for control over Markovian

packet loss channel from Theorem 4.3.2 and Theorem 4.5.2 as (1−q)|λ1|2 < 1,

which recovers the results in [38,46,117]. Moreover, if p = 1−q, we can further

recover the stabilizability condition for control over i.i.d. erasure channels as

in [41, 48].

4.5.3 Numerical Illustrations

For two-dimensional systems controlled over power constrained Markov lossy chan-

nels, suppose P = 3, σ2
ω = 1, the regions for (ln |λ1|, ln |λ2|) indicated by the derived

necessary conditions and sufficient conditions are plotted in Figure 4.7 under dif-

ferent failure and recovery rates. We plot the necessary stabilizability region and

sufficient stabilizability regions achieved with the optimal scheduler, the TDMA

scheduler and the adaptive TDMA scheduler for the case p = 0.3, q = 0.6. For

the cases of p = 0.6, q = 0.6 and p = 0.3, q = 0.9, only the stabilizability region

indicated by the necessity and sufficiency with the optimal scheduler is plotted. The

other sufficient stabilizability regions are omitted for clarity but can be plotted in a

similarly way as in the case of p = 0.3, q = 0.6.

For the given failure and recovery rate, it is clear that the adaptive TDMA scheduler

achieves a larger stabilizability region than the TDMA scheduler. When the two

eigenvalues are with equal magnitude, the adaptive TDMA scheduler is optimal,

which is implied in Corollary 4.5.1. Besides, the optimal scheduling Algorithm 4.2
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Necessity and Sufficiency with Optimal Scheduler

Sufficiency with Adaptive TDMA Scheduler

Sufficiency with TDMA Scheduler

when p=0.3, q=0.9

when p=0.3, q=0.6

when p=0.3, q=0.6

when p=0.3, q=0.6

Necessity and Sufficiency with Optimal Scheduler

Necessity and Sufficiency 

with Optimal Scheduler 

when p=0.6, q=0.6

λ1 = λ2

0.0 0.1 0.2 0.3 0.4

0.0

0.1

0.2

0.3

0.4

ln|λ1|

ln
|λ
2
|

Figure 4.7: Stabilizability regions for (ln |λ1|, ln |λ2|)

is tight as proved in Theorem 4.5.1. Moreover, when we increase the failure rate p

or the recovery rate q, the stabilizability region is reduced or enlarged as expected

due to the change of the reliability of the communication channel.

4.6 Summary

The chapter studies the mean square stabilization problem of discrete-time LTI sys-

tems over Gaussian Markov channels, which suffer from both signal-to-noise ratio

constraint and correlated channel fading modeled by a Markov process. The exis-

tence of a fundamental limitation for mean square stabilization is firstly established.

Sufficient stabilization conditions under a TDMA communication scheme are derived

in terms of the stability of a MJLS. Moreover, a necessary and sufficient condition is

presented for mean square stabilization of two-dimensional systems controlled over
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power constrained Markov lossy channels. Furthermore, improved sufficient stabiliz-

ability conditions are derived based on an adaptive TDMA communication scheme

for general highdimensional systems, which achieves a larger stabilizability region

than the TDMA communication scheme.

Nanyang Technological University Singapore



85

Part II

Distributed Consensus over

Fading Networks

Nanyang Technological University Singapore



Chapter 5

Distributed Consensus over

Undirected Fading Networks

5.1 Introduction

The previous chapters studied the networked control problem of single-agent sys-

tems over fading channels. It is still unknown how the channel fading affects the

consensus problem of MASs. Previously, the consensusability problem of MASs has

been studied under perfect communication assumptions in [82–85]. However, since

fading is unavoidable in wireless networks, which are commonly used by most MASs

nowadays, it is necessary to consider its impact on the consensusability of MASs.

In this chapter, we consider a distributed consensus problem, in which there are

multiple agents that are connected through faded communication channels. Each

agent can only receive corrupted information about its neighborhoods’ states. The

MAS wants to reach an agreement about all the agents’ states. We aim to charac-

terize the requirement on fading parameters and the communication topology that

can ensure the existence of a linear distributed consensus controller. The derived re-

sults would shed light on how the fading communication networks affect distributed

control systems.
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The rest of the chapter is organized as follows. Section 5.2 provides background

materials and the problem formulation. Section 5.3 deals with the case of identical

fading networks, and the mean square consensus problem over non-identical fading

networks is discussed in Section 5.4. Section 5.5 provides the numerical simulations

and this chapter ends with a summary in Section 5.6.

5.2 Problem Formulation

5.2.1 Communication Graph

In this subsection, we introduce the basis of graph theory used to model multi-

agent systems. For detailed reference to graph theory, please refer to [118, 119].

A directed graph G = (V , E) is used to characterize the interaction among agents,

where V = {1, 2, . . . , N} is the node set representing N agents and E ⊆ V × V

is the edge set with ordered pairs of nodes denoting the information transmission

among agents. An edge (i, j) ∈ E means that the i-th agent can send information

to the j-th agent, where node i and node j are called the initial node and terminal

node of this edge, respectively. The neighborhood set Ni of agent i is defined as

Ni = {j ∈ V |(j, i) ∈ E}. A directed path on G from agent i1 to agent il is

a sequence of ordered edges in the form of (ik, ik+1) ∈ E , k = 1, 2, . . . , l − 1. A

directed cycle is a directed path starting and ending at the same node. A graph

contains a directed spanning tree if it has at least one node with directed paths

to all other nodes. The underlying graph of G is the graph obtained by treating

edges of G as unordered pairs. The adjacency matrix Aadj is defined as [Aadj]ii = 0,

[Aadj]ij = 1 if (j, i) ∈ E and [Aadj]ij = 0, otherwise. A graph G is called balanced if

and only if
∑N

j=1[Aadj]ij =
∑N

j=1[Aadj]ji for all i. G is undirected if Aadj = A′adj. An

undirected graph is connected if there is a path between every pair of distinct nodes.

The graph Laplacian matrix L is defined as [L]ii =
∑

j∈Ni [Aadj]ij, [L]ij = −[Aadj]ij

for i 6= j. The graph Laplacian L has the following property.
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Lemma 5.2.1 ( [80]). All the eigenvalues of L have non-negative real parts. Zero

is a simple eigenvalue of L with a right eigenvector 1 if and only if G contains a

directed spanning tree.

5.2.2 Consensusability over Fading Networks

The discrete-time dynamics of agent i has the following form

xi(t+ 1) = Axi(t) +Bui(t), yi(t) = Cxi(t), (5.1)

where i = 1, 2, . . . , N , and xi ∈ Rn, yi ∈ Rp, ui ∈ Rm represent the agent state,

output and control input, respectively. Without loss of generality, we assume B has

full-column rank and C has full-row rank.

The agents communicate information to their neighbors through fading channels.

Specifically, in this chapter, we let the j-th agent send the information Cqj(t)−yj(t)

to the i-th agent at time t with qj ∈ Rn representing the j-th agent’s controller state

as specified later. At the channel output side, the i-th agent receives the deteriorated

information

rij(t) = γij(t)(Cqj(t)− yj(t)) + ωij(t)

with γij modeling the channel fading and ωij denoting a zero-mean white communi-

cation noise with bounded variance. For simplicity, we assume that all components

of Cqj(t) − yj(t) are transmitted together over the same fading channel, and do

not consider the channel input power constraint in this chapter. Combining all the

received information from its neighbors, agent i generates the control input by using

the following controller

qi(t+ 1) = (A+BK) qi(t) + F
∑
j∈Ni

[γij(t) (Cqi(t)− yi(t))− rij(t)] ,

ui(t) = Kqi(t),

(5.2)

where i = 1, 2, . . . , N , and F and K are controller parameters to be designed.
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Figure 5.1: Information transmission from agent j to agent i

Remark 5.2.1. The fading factors of MASs appear in the consensus protocol in a

similar way as the coupling terms cij in [120–122], which design adaptive updating

laws for cij to achieve a fully distributed consensus control. However, they are

different in the following aspects. Firstly, γij in our formulation arises from the

channel fading, which is part of the model and is stochastic, while cij is a design

parameter, which is part of the controller in [120–122]. Secondly, we try to determine

the relations of the agent dynamics, the network topology and the fading statistics

to ensure the existence of a consensus control law, while they aim at designing one

admissible consensus protocol to achieve a fully distributed consensus control.

Let εi = [xi
′, qi
′]′, ε = [ε′1, ε

′
2, . . . , ε

′
N ]′, and define the consensus error as δ =

ε − 1
N

((11′) ⊗ I2n)ε. The mean square consensus is defined as the mean square

boundedness of the consensus error, i.e., limt→∞ E{δ(t)δ(t)′} ≤M , where M > 0 is

a constant matrix.

We aim to derive conditions on the fading statistics, the agent dynamics and the

communication topology under which there exist F and K in the controller (5.2)

such that the multi-agent system (5.1) can achieve mean square consensus.

To avoid triviality, we make the following assumption as in Section II.B of [83].

Assumption 5.2.1. All the eigenvalues of A are either on or outside the unit disk.

In this chapter, the mean square consensusability problem is studied under undi-

rected graphs with identical fading networks and non-identical fading networks,

respectively. The case with directed graphs is studied in Chapter 6.
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5.3 Identical Fading Networks

In this section, we consider the scenario where all the fading channels are identical,

which is a reasonable assumption for MASs operating in a small area with similar

physical configurations.

Assumption 5.3.1. The channel fading is identical and i.i.d., i.e., γij(t) = γ(t)

for all t ≥ 0, i, j = 1, 2, . . . , N , and the sequence {γ(t)}t≥0 is i.i.d. with mean µ and

variance σ2.

Throughout this chapter, if the state of a stochastic dynamical system converges

to zero in mean square sense, we say the dynamical system is mean square stable.

The error dynamics of δ under Assumption 5.3.1 is δ(t + 1) = (I ⊗ A + γ(t)L ⊗

H)δ(t) + C(t), with A =
[
A BK
0 A+BK

]
,H = [ 0 0

−FC FC ] and C(t) = (I − 1
N

((11′) ⊗

I2n))[
∑N

j=1[0′,−ω1j(t)
′F ′], . . . ,

∑N
j=1[0′,−ωNj(t)′F ′]]′. Since ωij(t) is with bounded

variance, so is C(t). Because the consensusability is defined as the mean square

boundedness of δ, if the following dynamics is mean square stable

δ(t+ 1) = (IN ⊗A+ γ(t)L ⊗H) δ(t), (5.3)

i.e., limt→∞ E{δ(t)δ(t)′} = 0, mean square consensus of the MAS can be achieved.

Thus we focus on studying the requirement under which system (5.3) is mean square

stable. The following lemma, which describes the solvability of a modified Riccati

inequality, is critical in networked control over fading channels of a single agent

system. The extension of networked control over fading channels from single-agent

systems to MASs relies closely on Lemma 5.3.1.

Lemma 5.3.1 ( [45]). Under Assumption 5.2.1 and assuming that (C,A) is ob-

servable, there exists a solution P > 0 to the following modified Riccati inequality

P > APA′ − θAPC ′(CPC ′)−1
CPA′, (5.4)

if and only if θ is greater than a critical value θc ∈ [0, 1).
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Remark 5.3.1. The value θc is of great importance for determining the critical

erasure probability in Kalman filtering over intermittent channels [41, 45, 123]. It

has been shown that the critical value θc is only determined by the pair (A,C) [123].

However, an explicit expression of θc is only available for some specific situations.

For example, it has been shown that when rank(C) = 1, θc = 1− 1∏
i |λi(A)|2 and when

C is square and invertible, θc = 1 − 1
maxi |λi(A)|2 . For other cases, the critical value

θc can be obtained by solving a quasiconvex LMI optimization problem [45].

The basic idea in this subsection is to transform the mean square stabilization

problem of (5.3) into an equivalent simultaneous mean square stabilization problem,

i.e., to determine whether there exist common control gains F and K that can

simultaneously stabilize a series of subdynamics in mean square sense. Let h =

(IN ⊗
[
In −In
0 In

]
)δ, then

h(t+ 1) =
(
IN ⊗ Ā+ γ(t)L ⊗ H̄

)
h(t) (5.5)

with Ā =
[
A 0
0 A+BK

]
, H̄ =

[
FC 0
−FC 0

]
. The mean square stability of (5.3) is equivalent

to that of (5.5). If the undirected graph G is connected, we can select φi ∈ RN

such that Lφi = λiφi and form the unitary matrix Θ = [1/
√
N, φ2, φ3, . . . , φN ]

with diag(0, λ2, λ3, . . . , λN) = Θ′LΘ and 0 < λ2 ≤ λ3 ≤ · · · ≤ λN [80]. Let

g = [g′1, g
′
2, . . . , g

′
N ]′ = (Θ′ ⊗ I2n)h, then g1 ≡ 0 and

gi(t+ 1) = (Ā+ λiγ(t)H̄)gi(t) (5.6)

for i = 2, 3, . . . , N . Thus the mean square stability of (5.5) is equivalent to the

simultaneous mean square stability of (5.6) with i = 2, 3, . . . , N .

In the following, we will show that the mean square stability of (5.6) for any i can

be obtained from that of a low-dimensional system, which physically implies that

dynamic output feedback control has the same effect as state feedback control if the

communication topology is undirected and connected.
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Lemma 5.3.2. Under Assumptions 5.2.1 & 5.3.1, there exist F and K, such

that system (5.6) is mean square stable if and only if (A,B) is controllable and

g1i(t+ 1) = (A+ λiγ(t)FC)g1i(t) is mean square stable.

Proof. (Sufficiency) Suppose there exists F , such that g1i(t+1) = (A+λiγ(t)FC)g1i(t)

is mean square stable, then there exists P1i > 0, such that P1i > (A+λiµFC)P1i(A+

λiµFC)′+λ2
iσ

2FCP1iC
′F ′ [49]. Since (A,B) is controllable, there exist P2i > 0 and

K such that P2i − (A+ BK)P2i(A+ BK)′ > Qi for any Qi > 0. Let Qi = λ2
i (µ

2 +

σ2)FCP1iC
′F ′ + M ′

iH
−1
i Mi, Mi = (A + λiµFC)P1i(λiµFC)′ + λ2

iσ
2FCP1iC

′F ′,

Hi = P1i − λ2
iσ

2FCP1iC
′F ′ − (A + λiµFC)P1i(A + λiµFC)′, and P̄i =

[
P1i 0
0 P2i

]
.

Based on the Schur complement lemma [124], it is trivial to show that P̄i > (Ā +

λiµH̄)P̄i(Ā+λiµH̄)′+λ2
iσ

2H̄P̄iH̄′, which implies the mean square stability of (5.6)

and thus proves the sufficiency.

(Necessity) Since the system (5.6) is mean square stable, decomposing gi = [g′1i, g
′
2i]
′

as

g1i(t+ 1) = (A+ λiγ(t)FC) g1i(t), (5.7)

g2i(t+ 1) = (A+BK) g2i(t)− λiγ(t)FCg1i(t). (5.8)

Then, the subdynamics (5.7) should be mean square stable. Besides, from Lyapunov

inequality [125] in probability theory, the mean square stability of (5.6) implies that

the first-moment dynamics E{gi(t+1)} =
[
A+λiµFC 0
−λiµFC A+BK

]
E{gi(t)} is stable, which

indicates that A+BK is stable. Thus under Assumption 5.2.1, (A,B) is controllable.

This completes the proof of the necessity.

In view of Lemma 5.3.2, we have the following result.

Theorem 5.3.1. Under Assumptions 5.2.1 & 5.3.1, the MAS (5.1) is mean square

consensusable by the controller (5.2) under a connected undirected communication

topology if (A,B) is controllable, (C,A) is observable, and

θ1 ,
µ2

µ2 + σ2
×

[
1−

(
λN − λ2

λN + λ2

)2
]
> θc, (5.9)
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where θc is given in Lemma 5.3.1. Moreover, if (5.9) holds, there exists a solution

P0 > 0 to the modified Riccati inequality (5.4) with θ = θ1, and a pair of control

gains that ensures mean square consensus can be given by

F = − 2µ

(λ2 + λN)(µ2 + σ2)
AP0C

′(CP0C
′)
−1

and any K satisfying that A+BK is stable.

Proof. If (5.9) is satisfied and (C,A) is observable, in view of Lemma 5.3.1, there

exists a solution P0 > 0 to the modified Riccati inequality (5.4) with θ = θ1. It is

trivial to show that θ̄i > θ1 for all i = 2, 3, . . . , N with θ̄i = µ2

µ2+σ2 × 4(λi(λ2+λN )−λ2
i )

(λN+λ2)2 .

Thus we have

P0 > AP0A
′ − θ̄iAP0C

′(CP0C
′)
−1
CP0A

′,

which can be equivalently formulated as

P0 > AP0A
′ + λiµAP0C

′F ′ + λiµFCP0A
′ + λ2

i (µ
2 + σ2)FCP0C

′F ′

with F = − 2µ
(λ2+λN )(µ2+σ2)

AP0C
′(CP0C

′)−1. This implies that

g1i(t+ 1) = (A+ λiγ(t)FC)g1i(t)

is mean square stable for all i = 2, 3, . . . , N . Since (A,B) is controllable, in view

of Lemma 5.3.2, we know that (5.6) with i = 2, 3, . . . , N are simultaneously mean

square stable, which indicates that mean square consensus of MAS (5.1) is achieved

and this completes the proof.

In the following, we show that the sufficient condition in Theorem 5.3.1 is also

necessary for scalar systems, i.e., n = p = 1. Without loss of generality, let A = a0,

C = 1, F = f0.
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Theorem 5.3.2. Under Assumptions 5.2.1 & 5.3.1 and n = p = 1, the MAS (5.1)

is mean square consensusable by the controller (5.2) under a connected undirected

communication topology if and only if (A,B) is controllable, (C,A) is observable,

and (5.9) holds with θc = 1− 1
a2

0
.

Proof. Since the sufficiency has been shown in the proof of Theorem 5.3.1, here we

only prove the necessity. Since the mean square stability of (5.3) implies the mean

square stability of g1i(t + 1) = (a0 + λiγ(t)f0)g1i(t) for all i = 2, 3, . . . , N from the

proof of Lemma 5.3.2, we have

a2
0 + 2λiµf0a0 + λ2

i (µ
2 + σ2)f 2

0 < 1. (5.10)

By completing the square of (5.10), we have

(
λi
√
µ2 + σ2

f0

a0

+
µ√

µ2 + σ2

)2

<
1

a2
0

+
µ2

µ2 + σ2
− 1,

which further indicates

β
i
<

∣∣∣∣f0

a0

∣∣∣∣ < βi (5.11)

with

β
i

=
−
√

1
a2

0
+ µ2

µ2+σ2 − 1 + µ√
µ2+σ2

λi
√
µ2 + σ2

,

βi =

√
1
a2

0
+ µ2

µ2+σ2 − 1 + µ√
µ2+σ2

λi
√
µ2 + σ2

.

Since g1i(t+1) = (a0 +λiγ(t)f0)g1i(t) is mean square stable for all i ∈ {2, 3, . . . , N},

there exists a common
∣∣∣ f0

a0

∣∣∣, such that (5.11) holds for all i = 2, 3, . . . , N . This means

∩i
(
β
i
, βi
)

must be non-empty, which implies β
2
< βN . Further calculation shows

that (5.9) holds with θc = 1− 1
a2

0
. The proof is completed.

Remark 5.3.2. If each agent is a single integrator system

xi(t+ 1) = xi(t) + ui(t), i = 1, . . . , N, (5.12)
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the necessary and sufficient condition in Theorem 5.3.2 becomes

µ2

µ2 + σ2

[
1−

(
λN − λ2

λN + λ2

)]
> 0,

which holds naturally. This implies that as long as the undirected graph is connected,

the multi-agent system can achieve mean square consensus, irrelevant of the channel

fading level. This can be easily verified. If each agent is a single integrator system

as in (5.12), the mean square consensus problem is equivalent to the simultaneous

mean square stability problem that

g1i(t+ 1) = (1 + λiγ(t)f0)g1i(t), i = 2, . . . , N.

To stabilize the above systems, we should find f0 such that

E
{

(1 + λiγ(t)f0)2
}

= 1 + 2λiµf0 + λ2
i (µ

2 + σ2)f 2
0 < 1, (5.13)

for all i = 2, . . . , N . Since λi > 0, the condition (5.13) is equivalent to the require-

ment that

min
f0

max
i

2µf0 + λi(µ
2 + σ2)f 2

0 < 0.

Since

min
f0

max
i

2µf0 + λi(µ
2 + σ2)f 2

0 = min
f0

2µf0 + λN(µ2 + σ2)f 2
0

= − µ2

λN(µ2 + σ2)
< 0,

for any given µ2, σ2, λ2, . . . , λN , we can always find f0 such that (5.13) holds simul-

taneously. Therefore, for single integrator systems, as long as the undirected graph

is connected, mean square consensus can be achieved.

Remark 5.3.3. For single-input vector agent dynamics, the sufficient condition

might not be necessary. Suppose (5.6) are simultaneously mean square stabilizable,
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then in view of Lemma 5.3.2 and Lemma 1 in [49], for each i, |det(Γi)| < 1 with

Γi = (A′ + λiµF
′C ′)⊗ (A′ + λiµC

′F ′) + λ2
iσ

2(F ′C ′)⊗ (C ′F ′). (5.14)

Without loss of generality, assuming that the LTI dynamics is already in the canon-

ical observable form with

A =


0 . . . 0 a0

1 . . . 0 a1

...
. . .

...
...

0 . . . 1 an

 , C =
[
0; · · · ; 0; 1

]
,

and F = [f0, f1, · · · , fn−1], in view of Laplace expansion, it is trivial to calculate

that

det(Γi) = (a0 + λiµf0) 2(n−1)
(
λ2
i (µ

2 + σ2)f 2
0 + a2

0 + 2λiµf0a0

)
. (5.15)

Generally, from (5.15), we cannot conclude that (5.10) holds. Thus we cannot show

that the sufficient condition is necessary for single-input vector systems as in the

proof of Theorem 5.3.2 .

Remark 5.3.4. For agent dynamics with rank(C) > 1, the sufficient condition

might not be necessary. The following simplified model can be used to demonstrate

this point. Consider the systems

g1i(t+ 1) = (A+ λiγ(t)FC)g1i(t), i = 2, 3

with σ = 0, A =
[
c1 0
0 c2

]
, C = [ 1 0

0 1 ] and 0 < c1 < c2. If the sufficient condition (5.9)

is also necessary for mean square stabilization, then the following optimization prob-

lem

min
F

max
i
ρ(A+ λiµFC)
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returns an optimal value that is less than 1 if and only if

c2 <
λ3 + λ2

λ3 − λ2

. (5.16)

However, numerical evaluation shows that when choosing c1 = 2, c2 = 14, λ1 =

6, λ2 = 7, µ = 1, which contradicts the condition (5.16), the optimization problem

still returns an optimal value 0.6155, with the argument F =
[ −0.3022 1.3053
−0.0039 −2.1593

]
. Thus

the sufficient condition (5.9) is generally not necessary for the simultaneous mean

square stabilization of multiple-input systems.

5.4 Non-identical Fading Networks

In the presence of non-identical fading networks, the consensus error dynamics of

δ is δ(t + 1) = (IN ⊗A+ L(t)⊗H) δ(t) with [L(t)]ii =
∑

j∈Ni [L]ijγij(t), [L(t)]ij =

[L]ijγij(t) for i 6= j. Since the channel fading γij is coupled with elements of the

graph Laplacian, the analysis of the mean square consensus is difficult. In the

following, we propose to use edge Laplacian instead of graph Laplacian to model

the consensus dynamics. This method allows us to separate the fading effect from

the network topology by building dynamics on edges rather than on vertexes.

5.4.1 Definition of Edge Laplacian

A virtual orientation of the edge in an undirected graph is an assignment of direction

to the edge (i, j) such that one vertex is chosen to be the initial node and the other

to be the terminal node. The incidence matrix E(G) for an oriented graph G is

a {0, 1,−1}-matrix with rows and columns indexed by vertices and edges of G,

respectively, such that

[E(G)]ik =


+1, if i is the initial node of edge k

−1, if i is the terminal node of edge k

0, otherwise
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The graph Laplacian L and edge Laplacian Le can be constructed from the inci-

dence matrix respectively as L = E(G)E(G)′, Le = E(G)′E(G) [126]. In this section,

the consensus problem is studied under an undirected tree topology setting, where

the eigenvalues of the edge Laplacian Le are the non-zero eigenvalues of the graph

Laplacian L, i.e., λ2, λ3, . . . , λN [127]. Note that for the case with general connected

undirected graphs, it is sufficient to study the mean square consensus over an arbi-

trary tree subgraph in the communication topology. We limit our attention to the

state feedback case in this section.

Suppose agent k sends the information xk through the fading channel to agent j,

and the j-th agent receives the corrupted information as rjk(t) = γjk(t)xk(t) +

ωjk(t), where γjk represents the fading effect and ωjk denotes a zero-mean white

communication noise with bounded variance. The controller for agent j is designed

as

uj(t) = K
∑
k∈Nj

(γjk(t)xj(t)− rjk(t)) . (5.17)

Define the state on the i-th edge as zi = xj − xk, with j, k representing the initial

node and the terminal node of the i-th edge, respectively. Similarly, when only

mean square consensus is considered, ωjk can be neglected without loss of generality.

Assume that the fading on the same edge is equal, i.e., γjk = γkj, which makes sense

in practice [99]. Following the definition of the incidence matrix, the controller (5.17)

can be alternatively represented as uj(t) = K
∑N−1

k=1 ejkζk(t)zk(t), where ζk denotes

the fading effect on the k-th edge and ejk is the jk-th element of E(G). If we define

z = [z′1, z
′
2, . . . , z

′
N−1]′, the closed-loop dynamics on edges can be calculated as

z(t+ 1) = (IN−1 ⊗ A+ Leζ(t)⊗BK) z(t) (5.18)

with ζ = diag(ζ1, ζ2, . . . , ζN−1).

If (5.18) is mean square stable, the mean square consensus of the MAS (5.1) can be

achieved, i.e., limt→∞E{‖xi(t) − xj(t)‖2} = 0, ∀i, j ∈ V . Thus in the following, we

focus on studying the mean square stability of (5.18), and the following assumption

is made.
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Assumption 5.4.1. The channel fading sequence {ζi(t)}t≥0 is i.i.d. with mean µi

and variance σ2
i for all i = 1, 2, . . . , N − 1.

5.4.2 Sufficient Consensus Conditions

Under Assumption 5.4.1, we can derive a necessary and sufficient condition to ensure

the mean square stability of (5.18).

Lemma 5.4.1. Under Assumption 5.4.1, the system (5.18) is mean square stable if

and only if there exist K and P > 0, such that

P > (I ⊗ A+ LeΛ⊗BK)′P (I ⊗ A+ LeΛ⊗BK) + (I ⊗K)′G(I ⊗K) (5.19)

with G = (Σ ⊗ 11′) � ((Le ⊗ B)′P (Le ⊗ B)), Σ = [σij](N−1)×(N−1), σij = E{(ζi −

µi)(ζj − µj)} for i 6= j, σii = σ2
i and Λ = diag(µ1, µ2, . . . , µN−1).

Proof. This result is immediate from Lemma 1 in [49] by noting that Leζ(t)⊗BK =

(Le⊗B)(ζ(t)⊗ I)(I ⊗K) and treating IN−1⊗A, Le⊗B, I ⊗K and ζ(t)⊗ I as the

system matrix, input matrix, output matrix and fading effects of the MIMO system

studied in [49] respectively.

However, (5.19) cannot provide any physical insights into the mean square consen-

susability problem. In the following, we try to obtain some analytic conditions to

ensure mean square consensus of the MAS (5.1) under controller (5.17). Similar to

Lemma 5.3.1, we have the following result.

Lemma 5.4.2. [45] Under Assumption 5.2.1 and assuming that (A,B) is con-

trollable, there exists a solution P > 0 to the following modified Riccati inequality

P > A′PA− τA′PB(B′PB)
−1
B′PA (5.20)

if and only if τ is greater than a critical value τc ∈ [0, 1).
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The consensusability result is stated in Theorem 5.4.1.

Theorem 5.4.1. Under Assumptions 5.2.1 & 5.4.1, the multi-agent system (5.1) is

mean square consensusable by the controller (5.17) under an undirected tree topology

if there exists κ, such that

κ (LeΛ + ΛLe) + κ2(ΛL2
eΛ + Σ� L2

e) < −τcI, (5.21)

where τc is given in Lemma 5.4.2. Moreover, if such κ exists, there exists a solution

P0 > 0 to the modified Riccati inequality (5.20), with τ being the smallest eigenvalue

of −κ (LeΛ + ΛLe)− κ2(ΛL2
eΛ + Σ�L2

e), and a control gain that ensures the mean

square consensus can be given by K = κ(B′P0B)−1B′P0A.

Proof. If (5.21) is satisfied, in view of the solvability of (5.20), one can show that

there exists P0 > 0 to the matrix inequality

I ⊗ P0 > I ⊗ A′P0A

+ (κ (LeΛ + ΛLe) + κ2(ΛL2
eΛ + Σ� L2

e))⊗ A′P0B(B′P0B)
−1
B′P0A,

which actually is (5.19) with K = κ(B′P0B)−1B′P0A and P = I ⊗ P0 > 0. In view

of Lemma 5.4.1, the proof is completed.

Remark 5.4.1. If all the channel fading is identical, i.e., ζi(t) = ζ0(t), ∀i =

1, 2, . . . , N − 1 and E{ζ0(t)} = µ,E{(ζ0(t)− µ)2} = σ2, (5.21) is equivalent to

min
κ

max
i

κ2(µ2 +σ2)λ2
i +2κµλi < −τc, which further implies µ2

µ2+σ2

[
1−
(
λN−λ2

λN+λ2

)2]
>

τc. This is consistent with Theorem 5.3.1.

Theorem 5.4.1 implies that mean square consensusability is determined by the edge

Laplacian, the fading statistics and the agent dynamics. In the following, we will

show that under specific situations, the sufficient condition (5.21) can be further

simplified.

A. The case of Λ = µI
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With the help of Theorem 5.5.1 in [128], we can obtain a relaxed sufficient consensus

condition as: there exists κ, such that 2κµλ2 + κ2λ2
N(µ2 + ρ(Σ)) < −τc. Since

the minimum of the left hand side of the previous inequality is achieved at κ =

− µ
µ2+ρ(Σ)

λ2

λ2
N

with the minimal value − µ2

µ2+ρ(Σ)

λ2
2

λ2
N

, we have the following corollary.

Corollary 5.4.1. Under Assumptions 5.2.1 & 5.4.1 and if Λ = µI, the MAS (5.1) is

mean square consensusable by the controller (5.17) under an undirected tree topology

if

τ1 ,
µ2

µ2 + ρ(Σ)

λ2
2

λ2
N

> τc, (5.22)

where τc is given in Lemma 5.4.2. Moreover, if (5.22) holds, there exists a solution

P0 > 0 to the modified Riccati inequality (5.20) with τ = τ1, and a control gain that

ensures mean square consensus can be given by K = − µ
µ2+ρ(Σ)

λ2

λ2
N

(B′P0B)−1B′P0A.

Remark 5.4.2. If the channel fading is uncorrelated with each other, the left hand

side of (5.22) can be alternatively represented as λ2
2/
(
λ2
Nmaxi

[
1 +

σ2
i

µ2

])
. Since

arg maxi[1 +
σ2
i

µ2 ] = arg mini[
1
2

ln(1 + µ2

σ2
i
)], the condition (5.22) implies that the con-

sensusability is constrained by the eigenratio of the graph [83] and the minimal mean

square channel capacity [48] among all fading channels.

B. The case of Λ 6= µI

If Λ 6= µI, it is difficult to determine the eigenvalues of ΛLe+LeΛ. In the following,

we will show that if

2 max
i
|µi −

1

2
| < λ2

λN
, (5.23)

then ΛLe + LeΛ is positive definite, and we can further derive a relaxed sufficient

condition to ensure mean square consensus for the scenario of Λ 6= µI.

Corollary 5.4.2. Under Assumptions 5.2.1 & 5.4.1 and if (5.23) holds, the multi-

agent system (5.1) is mean square consensusable by the controller (5.17) under an

undirected tree topology if

τ2 ,
1

maxi[µ2
i ] + ρ(Σ)

λ̂2
2

4λ2
N

> τc, (5.24)
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where τc is given in Lemma 5.4.2, and λ̂2 is the smallest positive eigenvalue of

ΛLe +LeΛ. Moreover, if (5.24) holds, there exists a solution P0 > 0 to the modified

Riccati inequality (5.20) with τ = τ2, and a control gain that ensures mean square

consensus can be given by K = − 1
maxi[µ2

i ]+ρ(Σ)
λ̂2

2λ2
N

(B′P0B)−1B′P0A.

Proof. Let λ̂2 ≤ λ̂3 ≤ . . . ≤ λ̂N be the ordered eigenvalues of ΛLe +LeΛ. Following

Exercise 2 after Corollary 6.3.4 in [115], one can conclude that

|λ̂2 − λ2| ≤ ‖(Λ−
1

2
I)Le + Le(Λ−

1

2
I)‖2

≤ 2‖Λ− 1

2
I‖2‖Le‖2

≤ 2 max
i
|µi −

1

2
|λN .

If (5.23) holds, then |λ̂2 − λ2| < λ2, which means 0 < λ̂2 < 2λ2. Since λ̂2 is the

smallest eigenvalue of ΛLe + LeΛ, all the eigenvalues of ΛLe + LeΛ are positive.

Thus ΛLe + LeΛ is positive definite. Besides, for all x ∈ RN−1, we have

x′ΛL2
eΛx ≤ λ2

N(Λx)′(Λx) = λ2
Nx
′Λ′Λx ≤ λ2

Nmaxi[µ
2
i ]x
′x.

Based on the positive definiteness of ΛLe+LeΛ and the fact that ΛL2
eΛ ≤ λ2

Nmaxi[µ
2
i ]I,

we can obtain a sufficient condition for (5.21) as

min
κ

[κλ̂2 + κ2(max
i

[µ2
i ] + ρ(Σ))λ2

N ] < −τc. (5.25)

Following a similar line of argument as in the derivation of Corollary 5.4.1, we can

obtain (5.24) from (5.25). The proof is completed.

Remark 5.4.3. For general channel fading that does not satisfy (5.23), the con-

sensusability condition would be more complicated. However, if we adopt the con-

troller of the form uj(t) = K
∑

k∈Nj κk (γjk(t)xj(t)− rjk(t)) for each agent j, the

dynamics for z would be z(t + 1) =
(
IN−1 ⊗ A + Leζ(t)K ⊗ BK

)
z(t), with K =

diag
(
κ1, κ2, . . . , κN−1

)
. Then by appropriately selecting the gain matrix K, one can
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equalize the first moment of the channel fading statistics, thus we can obtain a suf-

ficient consensus condition as in the scenario of Λ = µI.

Remark 5.4.4. One can easily show the consistency among the derived results. The

results derived for non-identical fading networks always recover the results for iden-

tical fading networks, i.e., under certain situations, Corollary 5.4.2 implies Corol-

lary 5.4.1, and Corollary 5.4.1 implies Theorem 5.3.1.

5.5 Simulations

In this section, numerical simulations are conducted to verify the derived results.

The parameters for the LTI dynamics (5.1) is given by

A =


1.1830−0.1421−0.0399

0.1764 0.8641 −0.0394

0.1419−0.1098 0.9689

 , B = [0.2, 0.1,−0.5]′ ,

C = [1.3, 1.4, 1.5]

with λ(A) = {1.0086, 1.0068, 1.0006} and θc = τc = 0.0314. In the following, simu-

lations are conducted under two cases: identical fading networks with an undirected

graph, non-identical fading networks with an undirected tree graph. In simulations,

the initial system states are randomly generated from the uniform distribution on

the interval (0, 0.5). All the fadings are assumed to satisfy the Rayleigh distribution

with probability density function f(x;σp) = x
σ2
p
e−x

2/(2σ2
p), where x ≥ 0 and σp is the

parameter for the Rayleigh distribution to be specified later in each simulation. The

channel additive noise is drawn from a zero-mean normal distribution with variance

one. The simulation results are presented by averaging over 1000 runs.

Consider the consensus problem over identical fading networks with an undirected

graph, where the communication topology is given in Figure 5.2, and the iden-

tical channel fading is assumed to follow Rayleigh distribution with the parame-

ter σp = 5. In view of Theorem 5.3.1, the MAS is mean square consensusable

and one pair of control gains can be selected as F = [−0.0209, 0.0014,−0.0243]′,
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Figure 5.2: Communication topology for an undirected graph

K = [0.1183,−0.2153, 0.0915]. The mean square consensus error for agent 1 is

plotted in Figure 5.3.
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Figure 5.3: Mean square consensus error for agent 1 under an undirected communi-
cation topology with identical fading networks

For the case of consensus over non-identical fading networks, the communication

topology is assumed to be the same as in Figure 5.2, and the Rayleigh fading

statistics on the communication links 1 − 2, 1 − 3, 1 − 4 are σp12 = 0.4980, σp13 =

0.4950, σp14 = 0.4900, respectively. We assume that the channel fading is uncorre-

lated, and the sufficient condition to ensure mean square consensus in Corollary 5.4.2

is satisfied. One controller gain is K = [0.4608,−0.6829, 0.2069]. The mean square

consensus error for agent 1 is shown in Figure 5.4.
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Figure 5.4: Mean square consensus error for agent 1 under an undirected tree topol-
ogy with non-identical fading networks

Remark 5.5.1. Note that the tolerable Rayleigh fading statistics for the third sim-

ulation is smaller than the previous two simulations. This is because the fading pa-

rameters should satisfy the prerequisite (5.23), which in Corollary 5.4.2 is sufficient

only, and is adopted to deal with the complexity caused by Λ 6= µI. Nevertheless,

as noted in Remark 5.4.3, this limitation can be removed by adding more design

freedom to the controller.

5.6 Summary

This chapter studies the consensusability problem of discrete-time linear MASs over

undirected fading networks. It aims to decide whether there exists a distributed

controller such that the underlying MAS can achieve mean square consensus over

fading channels. Conditions to ensure mean square consensus are derived for the

scenarios of undirected communication topologies with identical fading networks

and undirected communications topologies with non-identical fading networks, re-

spectively. For scalar systems, the sufficient condition is shown to be necessary. The
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results indicate that the effect of fading networks on consensusability is determined

by the statistics of channel fading. Finally, simulations are conducted to validate

the theoretical results.
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Chapter 6

Distributed Consensus over

Directed Fading Networks

6.1 Introduction

In Chapter 5, we consider MASs over fading channels with an undirected graph

setting. For consensus over identical fading networks, a decomposition method is

used and the mean square consensus problem is transformed to a simultaneous mean

square stabilization problem. For consensus over non-identical fading networks, the

edge Laplacian defined for undirected graphs by [129] is introduced to model the

consensus error dynamics. Then sufficient mean square consensus conditions are

developed. However, since the graph Laplacian for directed graphs may contain

complex eigenvalues and there are no well-accepted definitions of edge Laplacian

for directed graphs, the method in Chapter 5 on undirected graphs for identical

and non-identical fading networks cannot be extended directly to directed graph

cases. In this chapter, we define the CIIM, CIM and CEL to study the mean

square consensus problem over fading networks with directed graphs. Sufficient

and necessary conditions for the mean square consensus are derived and the role of

network topology on the mean square consensusability is discussed.
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This chapter is organized as follows. The problem formulation is provided in Sec-

tion 6.2. The consensus problem over identical fading networks is studied in Sec-

tion 6.3. The definitions and properties of CIIM, CIM and CEL are discussed in

Section 6.4. The consensus problem over non-identical fading networks is further

studied in Section 6.5. Simulations are provided in Section 6.6 followed by some

concluding remarks in Section 6.7.

6.2 Problem Formulation

A directed graph G = (V , E) is used to characterize the interaction among agents as

in Section 5.2.1. The discrete-time dynamics of agent i is given by

xi(t+ 1) = Axi(t) +Bui(t), i = 1, 2, . . . , N (6.1)

where xi ∈ Rn and ui ∈ Rm represent the agent state and control input, respectively.

Agents communicate through fading channels. Specifically, if (j, i) ∈ E , we let agent

j send its state to agent i at every sampling time. The agent i then receives the

corrupted information rij(t) as

rij(t) = γij(t)xj(t) + ωij(t)

with γij modeling the channel fading and ωij representing the zero-mean additive

communication noise with bounded variance. Based on the received information

and its own state, agent i generates the control input with the consensus protocol

below

ui(t) = K
∑
j∈Ni

(γij(t)xi(t)− rij(t)), (6.2)

where K is the consensus parameter to be designed.

In this chapter, we are interested in the consensusability problem, i.e., we aim to

establish conditions on the fading statistics, the agent dynamics and the commu-

nication topology under which there exists K in the protocol (6.2) such that the
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MAS (6.1) can achieve mean square consensus, i.e., limt→∞ E{‖xi(t)− xj(t)‖2
2} < c

for some positive constant c and any i, j in V . In view of results in [80, 83], the

following assumption is made without loss of generality.

Assumption 6.2.1. 1. (A,B) is controllable and all the eigenvalues of A are

either on or outside the unit disk.

2. The directed graph G contains a directed spanning tree.

6.3 Identical Fading Networks

In this section, we consider the scenario where the channel fading on different edges

is identical.

Assumption 6.3.1. The channel fading on different edges is identical, i.e., γij(t) =

γ(t) for all t ≥ 0 with (j, i) ∈ E, and the sequence {γ(t)}t≥0 is i.i.d. with mean µ

and variance σ2.

In view of the analysis in Chapter 5, when only mean square consensus is considered,

the additive noise ωij can be ignored without loss of generality. Throughout this

chapter, if the state of a stochastic dynamical system converges to zero in mean

square sense, we say that the dynamical system is mean square stable.

6.3.1 Consensus Error Dynamics

Under Assumption 6.3.1 and the consensus protocol (6.2), the agent dynamics is

xi(t + 1) = Axi(t) + γ(t)BK
∑

j∈Ni(xi(t) − xj(t)), where the additive noise has

been ignored. Let X = [x′1, x
′
2, . . . , x

′
N ]′, then following the definitions of the graph

Laplacian, we have X(t + 1) = (I ⊗ A + γ(t)L ⊗ BK)X(t). Let h′ be the left

eigenvector of L associated with the zero eigenvalue, satisfying h′1 = 1, and define

the consensus error as δ = X − ((1h′)⊗ I)X. The consensus error evolves as

δ(t+ 1) = (I − 1r′ ⊗ I)(I ⊗ A+ γ(t)L ⊗BK)X(t)
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= (I ⊗ A+ γ(t)L ⊗BK)X(t)− 1h′ ⊗ AX(t)

= (I ⊗ A+ γ(t)L ⊗BK)δ(t). (6.3)

If there exists K, such that (6.3) is mean square stable, i.e., limt→∞ E {δ(t)δ(t)′} = 0,

mean square consensus of the MAS (6.1) can be achieved. Since G contains a

directed spanning tree, in view of Lemma 5.2.1, the graph Laplacian has the Jordan

decomposition U−1LU =
[

0 0
0 4
]

with U−1 = [ h
′
G ], U =

[
1, Y

]
for some matrices G,

Y and all the diagonal elements of 4 are the non-zero eigenvalues of L. Define the

coordinate transformation g = [g′1, g
′
2, . . . , g

′
N ]′ = (U−1 ⊗ I)δ, then g1(t) ≡ 0 and

[g2(t+ 1)′, . . . , gN(t+ 1)′]′ = (IN−1 ⊗ A+ γ(t)4⊗BK)[g2(t)′, . . . , gN(t)′]′.

Let λ2, . . . , λN be the non-zero eigenvalues of L arranged as |λ2| ≤ . . . ≤ |λN |. Then

we have the following result.

Lemma 6.3.1. If the following dynamics are simultaneously mean square stable,

gi(t+ 1) = (A+ γ(t)λiBK)gi(t), i = 2, . . . , N, (6.4)

i.e., limt→∞ E{gi(t)gi(t)∗} = 0 for all i = 2, . . . , N , then limt→∞ E {δ(t)δ(t)′} = 0.

Proof. In view of the above analysis, we only need to prove that if (6.4) are simul-

taneously mean square stable, then [g2(t)′, . . . , gN(t)′]′ is mean square stable. Here

we only consider the case that 4 =
[
λ2 1
0 λ3

]
. Induction can then be used to prove

the result for high dimensional systems. If gi(t+ 1) = (A+λiγ(t)BK)gi(t), i = 2, 3,

are mean square stable, then in view of Lemma 1 in [49], there exist P2 > 0 and

P3 > 0, such that

P2 > (A+ λ2µBK)∗P2(A+ λ2µBK) + λ∗2λ2σ
2K ′B′P2BK,

P3 > (A+ λ3µBK)∗P3(A+ λ3µBK) + λ∗3λ3σ
2K ′B′P3BK.

Thus there exists β > 0 such that

P3 > (A+ λ3µBK)∗P3(A+ λ3µBK) + λ∗3λ3σ
2K ′B′P3BK + βI.
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Select α to be sufficiently large such that

αβI > (µ2 + σ2)K ′B′P2BK + S∗(P −M)S,

where S = (A+λ2µBK)∗P2µBK+λ2σ
2K ′B′P2BK andM = (A+λ2µBK)∗P2(A+

λ2µBK) + λ∗2λ2σ
2K ′B′P2BK. Let P =

[
P2 0
0 αP3

]
. In view of Schur complement

lemma, we can show that

P > (I ⊗ A+ µ4⊗BK)∗P (I ⊗ A+ µ4⊗BK) + σ2(4⊗BK)∗P (4⊗BK).

Therefore, in view of Lemma 1 in [49], [g2(t + 1)′, g3(t + 1)′]′ = (I ⊗ A + γ(t)4 ⊗

BK)[g2(t)′, g3(t)′]′ is mean square stable. The proof is completed.

Therefore in the sequel, we shall focus on studying the simultaneous mean square

stabilizability of (6.4).

6.3.2 Consensusability Results

Theorem 6.3.1. Under Assumptions 6.2.1 and 6.3.1, the MAS (6.1) is mean square

consensusable by the protocol (6.2) under a directed communication topology, if the

following condition is satisfied

τ1 :=
µ2

µ2 + σ2
[1−min

k∈R
max

i∈{2,...,N}
|kλi + 1|2] > τc, (6.5)

where τc is defined in Lemma 5.4.2. Moreover, if (6.5) holds, there exists a so-

lution P0 > 0 to (5.20) with τ = τ1, and a control parameter that ensures the

mean square consensus can be given by K = µk1

µ2+σ2 (B′P0B)−1B′P0A with k1 =

arg mink∈R maxi |kλi + 1|2.

Proof. If (6.5) holds, then

−τ1 = max
i

µ2

µ2 + σ2
(|µ

2 + σ2

µ
ηλi + 1|2 − 1)
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= max
i
η2(µ2 + σ2)λ∗iλi + 2ηµRe(λi) < −τc

with η = µk1

µ2+σ2 . In view of Lemma 5.4.2, there exists a P0 > 0 such that

P0 > A′P0A− τ1A
′P0B(B′P0B)−1B′P0A

> A′P0A+ (η2(µ2 + σ2)λ∗iλi + 2ηµRe(λi))A
′P0B(B′P0B)−1B′P0A

for all i = 2, . . . , N , which also implies the existence of P0 > 0 andK = η(B′P0B)−1B′P0A

such that

P0 > (A+ λiµBK)∗P0(A+ λiµBK) + λ∗iλiσ
2K ′B′P0BK

for all i = 2, . . . , N . Thus from Lemma 1 in [49], we know that (6.4) is mean square

stable for all i = 2, . . . , N . This further implies that the mean square consensus is

achieved. The proof is completed.

Remark 6.3.1. Suppose all the agents are with single input, i.e., m = 1, then

from [45], τc = 1 − 1∏
i |λi(A)|2 with λi(A) being the unstable eigenvalue of A. In the

following, we will show the consistency between the mean square consensus condi-

tion (6.5) and some existing results.

1. Networked control over fading channels: For a single agent, the mean square

consensus problem simplifies to the mean square stabilization problem and (6.5)

implies
∏

i |λi(A)|2 < µ2

σ2 +1, which recovers the necessary and sufficient stabi-

lizability condition for networked control systems over fading channels in [48].

2. Consensus with perfect communication channels: If the communication chan-

nel is perfect, i.e., σ2 = 0, µ = 1, then (6.5) degenerates to mink∈R maxi |kλi+

1| < 1∏
i |λi(A)| , which is the necessary and sufficient consensus condition for

MASs over directed graphs [83].

3. Consensus over identical fading networks with undirected graphs: If the graph

is undirected, then 0 < λ2 ≤ . . . ≤ λN [80]. Therefore mink∈R maxi |kλi +
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1| = λN−λ2

λN+λ2
. Thus a sufficient condition to ensure mean square consensus

over identical fading networks with undirected graphs from (6.5) is µ2

µ2+σ2 [1 −

(λN−λ2

λN+λ2
)2] < 1 − 1∏

i |λi(A)|2 , which has been proved in Chapter 5 and shown to

be necessary when all agents are with scalar dynamics.

In the following, we prove that the sufficient condition in Theorem 6.3.1 is also

necessary when all agents are with scalar dynamics and the graph is directed, i.e.,

n = m = 1. Without loss of generality, let A = a0, B = 1 and K = k0.

Theorem 6.3.2. Under Assumptions 6.2.1 and 6.3.1 and if n = m = 1, the

MAS (6.1) is mean square consensusable by the protocol (6.2) under a directed com-

munication topology, if and only if (6.5) is satisfied with τc = 1− 1
a2

0
.

Proof. The sufficiency follows from Theorem 6.3.1. Only the necessity is proved here.

In view of the previous analysis, for scalar agent dynamics, the MAS (6.1) is mean

square consensusable if and only if gi(t+ 1) = (a0 + γ(t)λik0)gi(t) is simultaneously

mean square stabilizable for all i = 2, . . . , N , which also implies that there exists

k0 ∈ R, such that

E{|a0 + γ(t)λik0|2} = |λi|2(µ2 + σ2)k2
0 + 2Re(λi)µa0k0 + a2

0 < 1

for all i = 2, . . . , N or equivalently

min
k0

max
i
|λi|2(µ2 + σ2)k2

0 + 2Re(λi)µa0k0 + a2
0 < 1,

which actually is (6.5) with τc = 1− 1
a2

0
and k = k0(µ2+σ2)

µa0
. The proof is completed.

The sufficient consensus condition (6.5) involves solving a minimax optimization

problem, which cannot be explicitly derived for general directed graphs. In the

following, we propose to use the Lyapunov method to derive an explicitly sufficient

consensus condition for balanced directed graphs, which is directly expressed in

terms of the eigenvalues of the Laplacian matrix and avoids to solve an optimization

problem.

Nanyang Technological University Singapore



114 6.3. IDENTICAL FADING NETWORKS

6.3.3 Balanced Directed Graph Cases

The consensusability result for the MAS (6.1) under a balanced directed graph is

stated in Theorem 6.3.3.

Theorem 6.3.3. Under Assumptions 6.2.1 and 6.3.1, the MAS (6.1) is mean square

consensusable by the protocol (6.2) under a directed communication topology, if the

directed graph is balanced and

τ2 ,
µ2

µ2 + σ2
× λ̃2

2

η
> τc (6.6)

where τc is given in Lemma 5.4.2, η = ρ(L′L) and λ̃2 denotes the smallest positive

eigenvalue of Ls = (L + L′)/2. Moreover, if (6.6) holds, there exists a solution

P0 > 0 to the modified Riccati inequality (5.20) with τ = τ2, and a control gain that

ensures mean square consensus is given by

K = − µ

µ2 + σ2

λ̃2

η
(B′P0B)−1B′P0A.

Proof. Lyapunov methods will be used to show the mean square stability of (6.3)

and thus to prove the sufficiency. Define the Lyapunov function candidate V (t) =

E{δ(t)′(IN ⊗ P )δ(t)}, where P > 0. We can choose K as K = −κ(B′PB)−1B′PA

with κ > 0. Then A′PBK = K ′B′PA = −κA′PB(B′PB)−1B′PA, which implies

V (t+ 1) = E{δ(t+ 1)′(IN ⊗ P )δ(t+ 1)}

≤ E{δ(t)′(IN ⊗ A′PA+ 2µLs ⊗K ′B′PA+ η(µ2 + σ2)IN ⊗K ′B′PBK)δ(t)}.

(6.7)

Since the balanced directed graph G contains a directed spanning tree, Ls is a valid

graph Laplacian matrix for a connected undirected graph [130]. Thus we can select

φ̃i ∈ RN such that Lsφ̃i = λ̃iφ̃i, with 0 = λ̃1 < λ̃2 ≤ . . . ≤ λ̃N and form the unitary

matrix Θ̃ = [1/
√
N, φ̃2, φ̃3, . . . , φ̃N ], with diag(λ̃1, λ̃2, . . . , λ̃N) = Θ̃′LsΘ̃. Introduce

the state transformation f̃ = (Θ̃′ ⊗ IN)δ with f̃ = [f̃ ′1, f̃
′
2, . . . , f̃

′
N ]′, then f̃1 ≡ 0,
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and (6.7) becomes

V (t+ 1) ≤
N∑
i=2

E{f̃i(t)′(A′PA+ 2µλ̃iK
′B′PA+ η(µ2 + σ2)K ′B′PBK)f̃i(t)}. (6.8)

Let αi = 2µλ̃iκ−η(µ2+σ2)κ2, thenQi = A′PA+2µλ̃iK
′B′PA+η(µ2+σ2)K ′B′PBK =

A′PA−αiA′PB(B′PB)−1B′PA. If (6.6) is satisfied, there exists κ = µ
µ2+σ2

λ̃2

η
, such

that α2 > τc. Further, since (A,B) is controllable, in view of Lemma 5.4.2, there

exist P > 0 and a sufficiently small ζ > 0 such that (1 − ζ)P − Q2 > 0. Since

αi ≥ α2, (1− ζ)P −Qi > 0 for all i = 2, 3, . . . , N .

Thus there exists P > 0, with (1−ζ)P > A′PA+2µλ̃iK
′B′PA+η(µ2+σ2)K ′B′PBK

for all i = 2, 3, . . . , N . Further from (6.8), one can obtain that V (t + 1) ≤ (1 −

ζ)
∑N

i=1 E{f̃i(t)′P f̃i(t)} = (1 − ζ)E{δ(t)′(IN ⊗ P )δ(t)} = (1 − ζ)V (t). Thus V (t)

converges to zero exponentially and this completes the proof.

When the fading network is non-identical, if we still use the graph Laplacian to model

the consensus error dynamics, the channel fading would be coupled with elements

of the graph Laplacian. As a result, it is difficult to analyze the consensusability

condition. In the following section, we propose CIIM Ē, CIM E and CEL Le, and

analyze their properties. Subsequently, it will be shown that with such definitions,

we can remodel the consensus error dynamics and linearly separate the channel

fading from the network topology.

6.4 Definitions and Properties of CIIM, CIM and

CEL

6.4.1 Definitions of CIIM, CIM and CEL

If two agents i and j can communicate with each other, i.e., (i, j) ∈ E and (j, i) ∈ E ,

we call the link between them a bidirectional edge. Otherwise, we call the edge
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between them (if exists) a directed edge. The total number of edges in the graph is

represented by F , where a bidirectional edge is only counted once. Thus F ≤ |E| and

F = |E| if and only if there are no bidirectional edges in G. Firstly, by arbitrarily

applying an orientation to every bidirectional edge in G, the CIIM and CIM are

defined as follows.

Definition 6.4.1. The CIIM Ē and CIM E are N × F matrices with rows and

columns indexed by nodes and edges of G respectively, such that

• If the edge ep connecting two nodes i, j is bidirectional and the orientated edge

is with initial node j and terminal node i, then

(a) [Ē]lp = 1 for l = j, [Ē]lp = −1 for l = i, and [Ē]lp = 0 otherwise.

(b) [E]lp = 1 for l = j, [E]lp = −1 for l = i, and [E]lp = 0 otherwise.

• If the edge ep is a directed edge, and is with initial node j and terminal node

i, then

(a) [Ē]lp = −1 for l = i and [Ē]lp = 0 otherwise.

(b) [E]lp = 1 for l = j, [E]lp = −1 for l = i, and [E]lp = 0 otherwise.

With the defined CIIM and CIM, CEL is defined as follows.

Definition 6.4.2. The CEL of G is defined as

Le = E ′Ē.

Remark 6.4.1. Different from definitions of in-incidence matrix (IIM), incidence

matrix (IM) and directed edge Laplacian (DEL) for directed graphs in [131, 132],

the CIIM, CIM and CEL defined in this chapter treat a bidirectional edge only as

one virtually oriented edge, rather than two directed edges with opposite directions.

With such consideration, the dimension of the CEL is no larger than that of the

DEL, which would make the analysis and design of MASs simpler especially when
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numbers of agents and bidirectional edges are large. Moreover, CEL can degenerate

to the edge Laplacian for undirected graphs in [129], which is not possible for the

DEL. Thus the consistency of results for undirected graphs derived with CEL and

undirected edge Laplacian [129] can be guaranteed.

1

2 3

1

2 3

e1

e2
e3

1

2 3

e1 e2

(i) (ii) (iii)

Figure 6.1: (i) A directed graph with a bidirectional edge; (ii) Treat the bidirectional
edges as two edges with opposite directions; (iii) Apply an orientation and treat the
bidirectional edge as one virtually oriented edge

Take the directed graph in Figure 6.1(i) as an example. Follow the definitions

in [132], the IIM EIIM and IM EIM are 3×3 matrices with rows and columns indexed

by the node set {1, 2, 3} and the edge set {e1, e2, e3} as illustrated in Figure 6.1(ii)

and the DEL is given by LDEL = E ′IMEIIM. Nevertheless, the CIIM Ē, CIM E are

3×2 matrices with rows and columns indexed by the node set {1, 2, 3} and the edge

set {e1, e2} as illustrated in Figure 6.1(iii), where a dashed line is used to represent

a bidirectional edge with an arbitrarily chosen direction. The expressions of these

matrices are listed below.

EIIM =


0 −1 0

−1 0 0

0 0 −1

 ,Ē =


1 0

−1 0

0 −1

 ,LDEL =


1 −1 0

−1 1 0

0 −1 1

 ,

EIM =


1 −1 1

−1 1 0

0 0 −1

 ,E =


1 1

−1 0

0 −1

 , Le =

2 0

1 1

 .

It is immediate from the above that the dimension of Le is smaller than that of

LDEL. In the following we will analyze the properties of the CIIM, CIM and CEL

and show that some desired properties are still preserved.
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6.4.2 Properties of CIIM, CIM and CEL

We have the following result about the rank of the CIM. The proof is similar to that

of Theorem 8.3.1 in [118] and is omitted here.

Proposition 6.4.1. When the directed graph contains a directed spanning tree,

rank(E) = N − 1.

The graph Laplacian L for G can be reconstructed from the CIIM and CIM as

follows.

Proposition 6.4.2. The graph Laplacian L has the following expression

L = ĒE ′.

Proof. Firstly, consider the off-diagonal elements of ĒE ′. Suppose i 6= j and there

is a directed edge l connecting the node i and node j, with j being the initial node

and i the terminal node of edge l. Then the l-th element of [Ē]rowi is −1. The other

elements of [Ē]rowi can either be 1 (i as an initial node of an oriented bidirectional

edge), −1 (i as an terminal node of an edge1), or 0 (otherwise). Similarly, the l-

th element of [E]rowj is 1. The other elements of [E]rowj can either be 1 (j as an

initial node of an edge), −1 (j as an terminal node of an edge), or 0 (otherwise).

Since [ĒE ′]ij =
∑F

p=1[Ē]ip[E]jp and [Ē]il[E]jl = −1. In the following we will show

that for p 6= l, [Ē]ip[E]jp = 0. Suppose, for p 6= l, [Ē]ip[E]jp 6= 0, then the pair

([Ē]ip, [E]jp) can only be of four possibilities: [Ē]ip = 1, [E]jp = 1; [Ē]ip = 1,

[E]jp = −1; [Ē]ip = −1, [E]jp = 1 and [Ē]ip = −1, [E]jp = −1. The first scenario

[Ē]ip = 1, [E]jp = 1 and the fourth scenario [Ē]ip = −1, [E]jp = −1 are not possible,

since any edge p can only have one initial or terminal node. The second scenario

[Ē]ip = 1, [E]jp = −1 is also not possible since there is only a directed edge l from

node j to node i. There are no other edges connecting the two nodes i and j. The

third scenario [Ē]ip = −1, [E]jp = 1 is possible only for p = l, which violates the

1Without specifications, an edge means either a directed edge or an oriented bidirectional edge.
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assumption that p 6= l. Thus when there is a directed edge from node j to node i,

[ĒE]ij = −1.

Suppose there is a bidirectional edge l connecting node i and node j and a virtual

orientation is assigned to this bidirectional edge. Without loss of generality, let j

be assigned as the initial node and i as the terminal node. Similar to the analysis

for directed edges, we can show that [ĒE ′]ij = −1. Now consider the term [ĒE ′]ji.

Since the edge l is bidirectional, the l-th elements of [Ē]rowj and [E]rowi are 1 and

−1, respectively. Thus [Ē]jl[E]il = −1. Using similar arguments for directed edges,

we can prove that for p 6= l, [Ē]jp[E]ip = 0. Thus [ĒE ′]ji = −1. Therefore if two

nodes i and j are connected via a bidirectional edge, [ĒE ′]ij = [ĒE ′]ji = −1.

Similarly, when there are no edges connecting node i and node j, [Ē]ip[E]jp = 0 for

any edge p. Thus [ĒE ′]ij = 0. Consequently, from the definition of graph Laplacian,

we have [L]ij = [ĒE ′]ij for i 6= j.

Now consider the diagonal element of ĒE ′. Since [ĒE ′]ii =
∑F

p=1[Ē]ip[E]ip, and

[Ē]ip[E]ip can only be 1 or 0 in view of the definition of CIIM and CIM. There are

two situations that may result in [Ē]ip[E]ip = 1: [Ē]ip = 1, Eip = 1 (i as the initial

node of an oriented bidirectional edge), [Ē]ip = −1, Eip = −1 (i as the terminal node

of an edge). Thus the value of [ĒE ′]ii equals the sum of the number of bidirectional

edges that is connected to node i and the number of directed edges in which i serves

as a terminal node. Thus, from the definition of the graph Laplacian, [ĒE ′]ii = [L]ii.

Based on the above analysis, we have L = ĒE ′. The proof is completed.

In view of Definition 6.4.2 and Proposition 6.4.2, we further have the following result

about the eigenvalue distribution of CEL.

Proposition 6.4.3. The CEL Le and the graph Laplacian L share the same nonzero

eigenvalues. If G contains a directed spanning tree, then Le contains exactly N − 1

nonzero eigenvalues which are all in the open right-half plane and zero, if exists, is

a semi-simple eigenvalue2.

2The geometric multiplicity of a semi-simple eigenvalue equals to its algebraic multiplicity.
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Proof. Suppose λ is a nonzero eigenvalue of L with the associated non-zero right

eigenvector q. In view of Proposition 6.4.2, we have ĒE ′q = λq. Since λq 6= 0,

q̄ = E ′q 6= 0. Left multiply ĒE ′q = λq with E ′, we can obtain that E ′ĒE ′q = λE ′q,

which implies Leq̄ = λq̄. Thus λ is also a non-zero eigenvalue of Le. Similarly, we

can prove that any non-zero eigenvalue of Le is also a non-zero eigenvalue of L.

Thus the graph Laplacian L and the CEL Le share the same nonzero eigenvalues.

If the directed graph contains a directed spanning tree, from Lemma 5.2.1, we can

further draw the conclusion that the CEL contains exactlyN−1 nonzero eigenvalues,

which are all in the open right-half plane. Thus rank(Le) ≥ N −1. Since Le = E ′Ē,

we have rank(Le) ≤ rank(E ′) = N − 1 from Proposition 6.4.1. Thus rank(Le) =

N − 1. In view of the rank-nullity theorem, we have that null(Le) = F − N + 1.

Thus the geometric multiplicity of the zero eigenvalue of Le is F −N + 1. Since the

algebraic multiplicity of the zero eigenvalue of Le is F − N + 1, we know that the

geometric multiplicity of the zero eigenvalue of Le equals to its algebraic multiplicity.

The proof is completed.

With appropriate indexing of edges, we can write the CIIM Ē and CIM E respec-

tively as Ē = [Ēτ , Ēc] and E = [Eτ , Ec], where edges in Ēτ , Eτ are on a directed

spanning tree and the remaining edges are in Ēc, Ec. Analogous to the property of

the incidence matrix for undirected graphs in [129], we can reconstruct Ec with Eτ

from the following proposition.

Proposition 6.4.4. When G contains a directed spanning tree, there exists a matrix

S, such that Ec = EτS.

Define the matrix R = [I, S], then we can decompose Le as in the following propo-

sition.

Proposition 6.4.5. If G contains a directed spanning tree, then Le is similar to

the following matrix MR′ Mθ

0 0(F−N+1)×(F−N+1)

 ,
Nanyang Technological University Singapore



6.5. NON-IDENTICAL FADING NETWORKS 121

where M = E ′τ Ē and θ is the orthonormal basis of the null space of E. The nonzero

eigenvalues of Le are equal to those of MR′.

Proof. Since the directed graph contains a directed spanning tree, rank(E) = N −1

from Proposition 6.4.1. We thus have dim(θ) = dim(null(E)) = F − N + 1 and

θ′θ = IF−N+1. In view of the definition of R, we know that Eθ = EτRθ = 0.

Since Eτ is the CIM of a directed spanning tree, in view of Proposition 6.4.1, we

have that rank(Eτ ) = N − 1. Thus there exists a transformation matrix O, such

that Eτ = O[Ẽτ
′
(N−1)×(N−1),0

′
1×(N−1)]

′ with rank(Ẽτ ) = N − 1. Then we have that

ẼτRθ = 0. Since Ẽτ is invertible, we further have Rθ = 0.

Define the matrix T = [R′, θ], Q = [R′(RR′)−1, θ]′. Since Rθ = 0, every column in

R′ is orthogonal to the columns of θ. Thus the columns in R′ are independent of

the columns in θ. Then rank(T ) = F and T is invertible. Since Rθ = 0, the direct

multiplication shows that QT = I, thus T−1 = Q.

Applying the similarity transformation to Le with Q, T , we obtain that

QLeT =

MR′Mθ

0 0

 .
Since the dimension of MR′ is (N − 1) × (N − 1), and when the directed graph

contains a directed spanning tree, Le has N − 1 non-zero eigenvalues, we know

that the N − 1 nonzero eigenvalues of Le equals to those of MR′. The proof is

completed.

6.5 Non-identical Fading Networks

With the aid of CIIM, CIM and CEL, we can remodel the consensus error dynamics

in terms of edge states and linearly separate the channel fading from the network

topology. Since fading is mostly caused by path loss and shadowing from obstacles,

for simplicity we can assume that the fadings on the bidirectional edge are equal, i.e.,
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γij(t) = γji(t) if j and i are connected via a bidirectional edge, which makes sense in

practical applications [99]. For general channel fading models, where γij 6= γji, the

DEL can be used to formulate the consensus dynamics and similar analysis meth-

ods proposed in this section can be applicable to the study of the consensusability

problem. Therefore we can use a single-letter ζp to characterize the fading noise on

the p-th edge, i.e., ζp = γij if the edge p is with initial node j and terminal node i.

Firstly, apply an orientation to every bidirectional edge in the graph and define the

state on the l-th edge as zl = xj − xi, with j and i being the initial and terminal

node of the l-th edge, respectively. Then the dynamics of zl based on (6.1) and (6.2)

is

zl(t+ 1) = Azl(t) +B[uj(t)− ui(t)]

(a)
= Azl(t) +BK

F∑
p=1

ζp(t)([Ē]jp − [Ē]ip)zp(t)

(b)
= Azl(t) +BK

F∑
p=1

ζp(t)[E
′Ē]lpzp(t),

where the additive noise has been ignored; (a) follows from
∑

s∈Nj γjs(t)(xj(t) −

xs(t)) =
∑F

p=1 ζp(t)[Ē]jpzp(t) and
∑

h∈Ni γih(t)(xi(t)− xh(t)) =
∑F

p=1 ζp(t)[Ē]ipzp(t)

and (b) follows from the fact that [E ′Ē]lp =
∑N

s=1[E]sl[Ē]sp = [E]jl[Ē]jp+[E]il[Ē]ip =

[Ē]jp − [Ē]ip. Let z = [z′1, z
′
2, . . . , z

′
F ]′, then we have

z(t+ 1) = (I ⊗ A+ E ′Ēζ(t)⊗BK)z(t)

= (I ⊗ A+ Leζ(t)⊗BK)z(t), (6.9)

where ζ(t) = diag(ζ1(t), . . . , ζF(t)).

Suppose there is a directed cycle in G, the sum of edge states on the directed cycle

always equals zero, which imposes a constraint on the edge state z. We can further

verify that as long as there is a cycle in the underlying graph of G, such constraints

always exist. Thus not all edge states are free variables. This is illustrated in the

following proposition.
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Proposition 6.5.1. If G contains a directed spanning tree, then zc = (S ′ ⊗ I)zτ ,

where zτ is the edge state on the directed spanning tree and zc is the remaining edge

state.

Proof. Suppose the edges in G are indexed such that E = [Eτ , Ec] and Ē = [Ēτ , Ēc].

The edge states can be partitioned correspondingly as z = [z′τ , z
′
c]
′. From the def-

inition of the CIM E, we know that the edge states z and the node states x are

related by z = (E ′ ⊗ I)x. Thus we have [z′τ , z
′
c]
′ = ([Eτ , Ec]

′ ⊗ I)x, zτ = (E ′τ ⊗ I)x

and zc = (E ′c ⊗ I)x. In view of Proposition 6.4.4, we have Ec = EτS. Then

zc = ((S ′E ′τ )⊗ I)x = (S ′ ⊗ I)(E ′τ ⊗ I)x = (S ′ ⊗ I)zτ . The proof is completed.

For brevity, we call zc the cycle edge states since the edges associated with zc neces-

sarily complete cycles in the underlying graph of G. Proposition 6.5.1 implies that

cycle edge states can be reconstructed from the tree edge states. Thus we can make

a decomposition and further simplify the edge dynamics (6.9). Since z = [z′τ , z
′
c]
′,

we have from (6.9) that

zτ (t+ 1) = (I ⊗ A)zτ (t) + (E ′τ Ēτζτ (t)⊗BK)zτ (t) + (E ′τ Ēcζc(t)⊗BK)zc(t)

(a)
= (I ⊗ A+ (E ′τ Ēτζτ (t) + E ′τ Ēcζc(t)S

′)⊗BK)zτ (t)

= (I ⊗ A+Mζ(t)R′ ⊗BK)zτ (t), (6.10)

where ζτ , ζc represent the fading noise on directed spanning tree edges and cycle

edges, respectively and (a) follows from Proposition 6.5.1.

Since the graph contains a directed spanning tree, in view of the definition of the

edge state z, if (6.9) is mean square stable, mean square consensus can be achieved.

Based on Proposition 6.5.1, the stability property of (6.9) is determined by (6.10).

Thus in the following, we shall focus on studying the mean square stability of (6.10).

In the subsequent analysis, we make the following assumption about the fading noise

ζi, i = 1, . . . , F .

Assumption 6.5.1. The channel fading sequence {ζi(t)}t≥0 is i.i.d. with mean µi

and variance σ2
i for all i = 1, 2, . . . ,F .
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Analogous to the proof of Lemma 5.4.1 in Chapter 5, we can show that a necessary

and sufficient condition to ensure the mean square stabilizability of (6.10) is given

as below.

Lemma 6.5.1. Under Assumptions 6.2.1 and 6.5.1, (6.10) is mean square stable

if and only if there exist P > 0 and K such that

P > (I ⊗A+MΛR′⊗BK)′P (I ⊗A+MΛR′⊗BK) + (R′⊗K)′G(R′⊗K) (6.11)

with G = (Σ⊗11′)�((M⊗B)′P (M⊗B)), Σ = [σij]F×F , σij = E{(ζi−µi)(ζj−µj)}

for i 6= j, σii = σ2
i and Λ = diag(µ1, µ2, . . . , µF).

The condition (6.11) is not easy to verify. In the following, we provide a simplified

sufficient condition, which can be solved via a feasibility problem over real numbers.

Theorem 6.5.1. Under Assumptions 6.2.1 and 6.5.1, the MAS (6.1) is mean

square consensusable by the protocol (6.2) under a directed communication topology

if there exists k ∈ R, such that

k (MΛR′ +RΛM ′) + k2R(W � ΛM ′MΛ)R′ < −τcI, (6.12)

where W = 11′ + Λ−1ΣΛ−1 and τc is defined in Lemma 5.4.2. Moreover, if such k

exists, there exists a solution P0 > 0 to (5.20), with τ being the smallest eigenvalue

of −k (MΛR′ +RΛM ′)−k2R(W �ΛM ′MΛ)R′, and a control gain that ensures the

mean square consensus can be given by K = k(B′P0B)−1B′P0A.

Proof. If there exists k ∈ R, such that (6.12) holds, in view of the solvability

of (5.20), one can show that there exists P0 > 0 to the matrix inequality

I ⊗ P0 > I ⊗ A′P0A+ (k (MΛR′ +RΛM ′)

+ k2R(W � ΛM ′MΛ)R′)⊗ A′P0B(B′P0B)
−1
B′P0A. (6.13)
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Since W � ΛM ′MΛ = ΛM ′MΛ + Σ�M ′M , we have from (6.13) that

I ⊗ P0 > I ⊗ A′P0A+H ⊗ A′P0B(B′P0B)
−1
B′P0A (6.14)

with H = k2(RΛM ′MΛR′ + R(Σ �M ′M)R′) + k (MΛR′ +RΛM ′). The inequal-

ity (6.14) is (6.11) with K = k(B′P0B)−1B′P0A and P = I ⊗ P0 > 0. In view of

Lemma 6.5.1, the proof is completed.

Remark 6.5.1. Since W ≥ 0 and ΛM ′MΛ ≥ 0, in view of Theorem 5.2.1 in [128],

we have W � ΛM ′MΛ ≥ 0, thus R(W � ΛM ′MΛ)R′ ≥ 0. Let V be the Cholesky

decomposition of R(W � ΛM ′MΛ)R′, i.e., R(W � ΛM ′MΛ)R′ = V V ′, then the

sufficient condition in Theorem 6.5.1 can be numerically verified by the following

LMI feasibility problem

∃ k s.t.

−I kV ′

kV k(MΛR′ +RΛM ′) + τcI

 < 0.

Remark 6.5.2. If the fading networks are identical, i.e., ζi(t) = ζ0(t), ∀i =

1, 2, . . . ,F , E{ζ0(t)} = µ and E{(ζ0(t)− µ)2} = σ2, and G is an undirected tree,

i.e., R = I and M = M ′ = Le = L′e, then (6.12) is equivalent to min
k

max
i∈{2,...,N}

k2(µ2 +

σ2)λ2
i + 2kµλi < −τc with λ2, . . . , λN being the non-zero real eigenvalues of L ar-

ranged in an ascending order, which can result in the sufficient mean square con-

sensus condition given by µ2

µ2+σ2

[
1 −

(
λN−λ2

λN+λ2

)2]
> τc. This is consistent with Theo-

rem 5.3.1, where it is also shown to be necessary for mean square consensus when

the agents are with scalar dynamics.

In the following, we try to derive closed-form consensus conditions for some specific

fading networks.

6.5.1 Λ = µI

Since τcI+k2R(W �ΛM ′MΛ)R′ > 0, when Λ = µI, a necessary condition to ensure

the feasibility of (6.12) is that there exists k, such that k(MR′ + RM ′) < 0. Since
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tr(MR′ + RM ′) = 2tr(MR′) = 2
∑

i λi(MR′)
(a)
= 2

∑
i λi(Le)

(b)
= 2

∑
i λi(L) > 0,

where (a) follows from Proposition 6.4.5 and (b) follows from Proposition 6.4.3,

we know that at least one eigenvalue of MR′ + RM ′ should be positive. Thus if

k(MR′+RM ′) is required to be negative definite, k should be selected to be negative

and MR′ + RM ′ should be positive definite. Thus we make the assumption that

MR′+RM ′ > 0 during the following analysis, which is an implicitly required graph

property for (6.12) to hold.

Corollary 6.5.1. Under Assumptions 6.2.1 and 6.5.1, if Λ = µI and MR′+RM ′ >

0, the MAS (6.1) is mean square consensusable by the protocol (6.2) under a directed

communication topology, if the following condition is satisfied

τ3 :=
µ2

µ2 + maxi σ2
i

×
λ2

min(MR′+RM ′

2
)

ρ(RR′)ρ(M ′M)
> τc, (6.15)

where τc is defined in Lemma 5.4.2. Moreover, if (6.15) holds, there exists a solution

P0 > 0 to (5.20) with τ = τ2, and a control gain that ensures mean square consensus

can be given by K = k2(B′P0B)−1B′P0A with

k2 = −
µλmin(MR′+RM ′

2
)

[µ2 + maxi σ2
i ]ρ(RR′)ρ(M ′M)

.

Proof. Since W ≥ 0, M ′M ≥ 0 and W�M ′M ≥ 0, in view of Theorem 5.3.4 in [128],

we know that 0 ≤ λ(W �M ′M) ≤ maxi[W ]ii × ρ(M ′M) = maxi(1 +
σ2
i

µ2 )ρ(M ′M)

with λ(W �M ′M) being any eigenvalue of W �M ′M . Thus we have that R(W �

M ′M)R′ ≤ ρ(W �M ′M)RR′ ≤ maxi(1 +
σ2
i

µ2 )ρ(M ′M)RR′. Further from Weyl’s

inequality [124], we have that ρ(R(W �M ′M)R′) ≤ maxi(1 +
σ2
i

µ2 )ρ(M ′M)ρ(RR′).

Since RR′ = I +SS ′ > 0, we have ρ(RR′) > 0. Besides, when G contains a directed

spanning tree, in view of Lemma 5.2.1 and Proposition 6.4.2, EτE
′
τ = Lτ > 0 with

Lτ being the graph Laplacian for the underlying graph of a directed spanning tree

in G. Since M ′M = Ē ′EτE
′
τ Ē, we know that M ′M > 0 and thus ρ(M ′M) > 0.
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Since MR′ +RM ′ > 0, if there exists k such that

k2[µ2 + max
i
σ2
i ]ρ(RR′)ρ(M ′M) + 2kµλmin(

MR′ +RM ′

2
) < −τc, (6.16)

the sufficient condition (6.12) can be satisfied. Since the minimum of the left hand

side of (6.16) is achieved at k = k2, with the minimal value −τ3, we can then obtain

the sufficient consensus condition (6.15). The proof is completed.

The sufficient condition (6.15) implies that the mean square consensusability is

determined by the channel fading, the network topology and the agent dynamics.

Besides, the mean square consensusability is affected by the channel with the largest

fading variance. Moreover, the effect of the network topology on the mean square

consensusability is reflected on the term α with

α :=
λ2

min(MR′+RM ′

2
)

ρ(RR′)ρ(M ′M)
.

In view of (6.15), a large α is always preferred to compensate the fading variance

and tolerate unstable agent dynamics. In the following, we will use α as a measure

to study how certain network topology affects the mean square consensusability.

First of all, we have the following proposition about the range of α.

Proposition 6.5.2. If G contains a directed spanning tree and MR′ + RM ′ > 0,

then 0 < α ≤ 1.

Proof. It is trivial to have α > 0. In the sequel, we will show that λ2
min(MR′+RM ′

2
) ≤

ρ(RR′)ρ(M ′M). Since whenMR′+RM ′ > 0, we have λ2
min(MR′+RM ′

2
) ≤ Re2(λ(MR′))

with λ(MR′) being any eigenvalue of MR′ from Bendixson’s theorem [124]. In

view of the Browne’s theorem [124], we have that |λ(MR′)|2 ≤ ρ(RM ′MR′), thus

λ2
min(MR′+RM ′

2
) ≤ ρ(RM ′MR′) ≤ ρ(RR′)ρ(M ′M). The proof is completed.

We give some examples of different communication graphs as follows.
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1

2 3
. . . N

e1 e2
eN−1

1

2 3
. . . N

e1 e2
eN−1

eN

(i) (ii)

1 2 3 . . . N
e1 e2 eN−1

(iii)

Figure 6.2: (i) A star graph (ii) A directed graph with a cycle in its underlying
graph (iii) A directed path graph

6.5.1.1 Star Graphs

If the graph is a star as shown in Figure 6.2(i), we have that R = I and M = Le =

IN−1. Evidently, MR′+RM ′

2
= I > 0 and λ2

min(MR′+RM ′

2
) = ρ(M ′M) = ρ(RR′) = 1.

Thus α = 1, which means that scaling on the number of agents in the MAS does not

affect the mean square consensus for star graphs. Moreover, from Proposition 6.5.2,

if we use α as an indicator to select the network topology, star graph is the most

favorable in the sense that it has the largest possible value of α.

By adding an edge to the star graph, we obtain the graph in Figure 6.2(ii), which

contains a cycle in its underlying graph. Then we have M =
[
I(N−1)×(N−1), Q

]
,

R =
[
I(N−1)×(N−1), S

]
with Q = [0, 1, 0, . . . , 0]′ and S = [−1, 1, 0, . . . , 0]′. We can

show that MR′ + RM ′ > 0, λmin(MR′ + RM ′) = 3 −
√

2, ρ(M ′M) = 2 and

ρ(RR′) = 3. Thus α = (3−
√

2)2

24
. Since (3−

√
2)2

24
< 1, more edges are not always

beneficial to the mean square consensus. This can be interpreted from (6.10). Even

though mean square consensus is determined by edge states on a directed spanning

tree, the fading noise on cycle edges still affects mean square consensus as seen

from (6.10). Thus the insertion of an edge also introduces the associated fading

noise into the tree edge state dynamics, which may pose negative effects on the

mean square consensus.
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6.5.1.2 Directed Path Graphs

If the directed graph is a path as denoted in Figure 6.2(iii), then R = I and

M =


1 0 . . . . . . 0

−1 1 0 . . . 0
...

. . .
...

0 . . . 0 −1 1

 .

Since MR′ + RM ′ is a tri-diagonal matrix, in view of [133], we know that the

eigenvalues of MR′+RM ′ are 2−2 cos lπ
N

, l = 1, 2, . . . , N−1. Thus MR′+RM ′ > 0

and λmin(MR′ +RM ′) = 2− 2 cos π
N

. Since RM ′MR′ = MR′ +RM ′ +D with

D =


0 . . . 0
...

. . .
...

0 . . .−1

 ,
the eigenvalue perturbation theorem [115] implies that λ1(D) ≤ ρ(RM ′MR′) −

ρ(MR′+RM ′) ≤ λN−1(D) with λi(D) being the i-th smallest eigenvalues ofD. Since

λ1(D) = −1 and λ2(D) = . . . = λN−1(D) = 0, and ρ(MR′+RM ′) = 2−2 cos (N−1)π
N

,

we have that 1 − 2 cos (N−1)π
N
≤ ρ(RM ′MR′) = ρ(RR′)ρ(M ′M) ≤ 2 − 2 cos (N−1)π

N
.

When N is sufficiently large, the ratio α is lower and upper bounded respectively

by
(1− cos π

N
)2

2− 2 cos (N−1)π
N

≤ α ≤
(1− cos π

N
)2

1− 2 cos (N−1)π
N

.

With the increasing number of agents, α will eventually converge to zero. Thus

consensus is hard to achieve. This is consistent with our intuition: for consensus

over a path graph, more agents means that the consensus is harder to achieve.

This is different from the star graph, where scaling does not affect the consensus

condition.
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6.5.2 Λ 6= µI

When Λ 6= µI, we have the following sufficient consensus condition. The proof is

similar to that of Corollary 6.5.1 and is omitted here.

Corollary 6.5.2. Under Assumptions 6.2.1 and 6.5.1, if MΛR′ + RΛM ′ > 0,

the MAS (6.1) is mean square consensusable by the protocol (6.2) under a directed

communication topology, if the following condition is satisfied

τ4 :=
λ2

min(MΛR′+RΛM ′

2
)

maxi(1 +
σ2
i

µ2
i
)ρ(RR′)ρ(ΛM ′MΛ)

> τc, (6.17)

where τc is defined in Lemma 5.4.2. Moreover, if (6.17) holds, there exists a solution

P0 > 0 to (5.20) with τ = τ4, and a control gain that ensures mean square consensus

can be given by

K = −
λmin(MΛR′+RΛM ′

2
)

maxi(1 +
σ2
i

µ2
i
)ρ(RR′)ρ(ΛM ′MΛ)

(B′P0B)
−1
B′P0A.

Remark 6.5.3. When Λ = µI, (6.17) recovers (6.15). Next, consider the case that

Λ = µI and the graph is an undirected tree, then R = I and M = M ′ = Le = L′e.

Thus, we have λmin(MR′+RM ′

2
) = λ2 and ρ(RR′)ρ(M ′M) = λ2

N , with λ2 and λN being

the smallest and the largest non-zero eigenvalues of the graph Laplacian for the undi-

rected graph. Then a sufficient condition to ensure mean square consensus for non-

identical fading networks with undirected tree graph from (6.15) is µ2

µ2+maxi σ2
i

λ2
2

λ2
N
> τc.

Since maxi σ
2
i = maxi σii ≤ ρ(Σ), Corollary 6.5.1 recovers Corollary 5.4.1. Simi-

larly, we can also show that Corollary 6.5.2 recovers Corollary 5.4.2 for the case of

Λ 6= µI.

6.6 Simulations

In this section, simulations are conducted to validate the derived results. We con-

sider two different scenarios, i.e., identical fading networks and non-identical fading
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Figure 6.3: Communication graphs used in simulations: (i) a directed graph (ii)
applying an orientation to the bidirectional edge in (i)

networks with non-equal fading means. In simulations, the agents are assumed to

have the system parameters as in Chapter 5. The initial state of each agent is uni-

formly and randomly generated from the interval (0, 0.5). We assume that there

are four agents and the directed communication topology among agents is given in

Figure 6.3(i). The channel fadings are assumed to follow Rayleigh distribution with

probability density function f(x;σp) = x
σ2
p
e−x

2/(2σ2
p), x ≥ 0. The additive noises are

set to have standard normal distributions. The simulation results are presented by

averaging over 1000 runs.

Firstly, suppose that all the channel fadings are identical and follow Rayleigh dis-

tributions with σp = 5. Then the sufficient consensus condition in Theorem 6.3.1

is satisfied and one admissible control gain is K = [6.7757,−8.1021, 1.2307]. Mean

square consensus errors for agent 1 are plotted in Figure 6.4. It is clear that mean

square consensus of the MAS is achieved. Now suppose the fading parameters for

the four edges in Figure 6.3(i) are σp12 = 5, σp13 = 4.9, σp14 = 4.8, σp23 = 4.7.

Then the fading on different edges have different mean value. With such fading

parameters, the sufficient condition in Corollary 6.5.2 is satisfied and an admissible

control gain is given by K = [0.3750,−0.4686, 0.0868]. Mean square consensus er-

rors for agent 1 are plotted in Figure 6.5, which also shows that the mean square

consensus is achieved. Since the consensus parameter K is designed for mean square

stabilization and not for performance, there are overshots in both simulations.
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Figure 6.4: Mean square consensus error for agent 1 under a directed topology with
identical fading networks
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Figure 6.5: Mean square consensus error for agent 1 under a directed topology with
non-identical fading networks and non-equal mean value
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6.7 Summary

This chapter studies the mean square consensus problem of discrete-time linear

MASs over analog fading networks with directed graphs. Sufficient conditions are

firstly provided for mean square consensus over identical fading networks with di-

rected graphs. It is shown that the sufficient condition is necessary when agents

are with scalar dynamics. For consensus over non-identical fading networks with

directed graphs, CIIM, CIM and CEL are proposed to facilitate the modeling and

consensus analysis. It is shown that the mean square consensusability is solely de-

termined by the edge state dynamics on a directed spanning tree. As a result, suf-

ficient conditions are provided for mean square consensus over non-identical fading

networks with directed graphs in terms of fading parameters, the network topology

and the agent dynamics. Moreover, the role of network topology on the mean square

consensusability is discussed. In the end, simulations are conducted to verify the

derived results.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

Due to the flexible architecture and ease of installation and maintenance, wireless

communication networks are widely used in control systems. This thesis is specif-

ically interested in the fading phenomenon in wireless communications. We aim

to study how the channel fading affects the stability of networked control systems.

There already exist some results about this issue. However, the answers are far

from complete. The present work is concerned with the problem of stabilizability

over fading channels and also with the problem of consensusability of multi-agent

systems over fading networks. The following conclusions can be made.

• First of all, there exist fundamental limitations on the mean square stabiliz-

ability of linear systems over power constrained fading channels and Gaussian

finite-state Markov channels.

• Secondly, the stabilizability condition for control over power constrained fad-

ing channels is determined by the fading statistics and the SNR ratio of the

communication channel. For control over Gaussian finite-state Markov chan-

nels, the stabilizability is determined by the Markov transition probability and

the finite-level channel fading.
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• The revised Schalkwijk coding scheme is optimal for control over fading chan-

nels when the system is with scalar dynamics. For two-dimensional systems,

the chasing and optimal stopping algorithm is optimal for the channel resource

allocation. The TDMA and adaptive TDMA schemes are only sufficient but

not optimal for channel resource allocations of high-dimensional systems con-

trolled over time-varying channels.

• For distributed consensus over fading networks problems, the consensusability

is closely related to the statistics of the fading network, the eigenratio of the

graph, and the instability degree of the dynamical system.

• The mean square consensusability is determined by edge state dynamics on a

directed spanning tree and the minimal mean square channel capacity among

all fading channels.

7.2 Future Work

There are many issues that deserve future research including

• In Chapter 3 and Chapter 4, the capacity was derived under the assumption

that there exists a perfect feedback link from the channel output to the chan-

nel input. What would the capacity be when there is no such feedback link

or there is only a noisy feedback link? Besides, we assume the knowledge of

perfect channel state information at the receiver side in the problem formula-

tion. What are the stabilizability conditions if the channel fading cannot be

estimated accurately? Moreover, for vector systems, there is a gap between

the sufficient condition and the necessary condition. Since we have only pro-

vided sufficient conditions with coding strategies adopting the idea of TDMA,

can we achieve better results by other strategies, such as frequency division

multiple access (FDMA) or code division multiple access (CDMA)?
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• In Chapter 5 and Chapter 6, most of the derived results are only sufficient

conditions. What are the necessary conditions for distributed consensus over

fading networks? Besides, in modeling the fading channel, we did not consider

the channel input power constraint. What are the consensus conditions when

the channel has input power constraint? These questions need to be answered

for better understanding the interaction of control and communication.

• Chapter 3 and Chapter 4 present the results for point-to-point communica-

tion channels. Chapter 5 and Chapter 6 provide the results for distributed

consensus over fading networks. While for networked control over other com-

munication models, such as MAC and BC, there exist very few results. The

networked control over MAC and BC is also one of the future research direc-

tions.

• In this thesis, we are mainly concerned with the stability problem of networked

control over fading channels. In practice, the wireless communication channel

may also suffer from transmission delay. Since control systems are sensitive

to time-delay, how the channel fading, SNR constraint and time-delay jointly

affect the stability of networked control systems also deserves more work.

• So far, we have only studied the stability issue of networked control systems.

The problem about how the performance of a networked control system is

affected by communication channels is worthy of study. This problem is

closely related to the sequential rate-distortion problem in [134]. However,

the work [134] models the effect of the communication channel by a directed

information constraint. It is still unknown how specific communication chan-

nels affect the sequential rate-distortion problem.
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[109] R. B. Ash and C. A. Doléans-Dade, Probability and measure theory. San

Diego: Harcourt/Academic Press, 2000.

[110] L. Xu, Y. Mo, and L. Xie, “Mean square stabilization of vector LTI systems

over power constrained lossy channels,” in Proceedings of the 2016 American

Control Conference, Boston, MA, USA, 2016, Conference Proceedings, pp.

7129–7134.

[111] A. J. Goldsmith and P. P. Varaiya, “Capacity, mutual information, and coding

for finite-state Markov channels,” IEEE Transactions on Information Theory,

vol. 42, no. 3, pp. 868–886, 1996.

[112] H. Viswanathan, “Capacity of Markov channels with receiver CSI and delayed

feedback,” IEEE Transactions on Information Theory, vol. 45, no. 2, pp. 761–

771, 1999.

[113] J. Liu, N. Elia, and S. Tatikonda, “Capacity-achieving feedback schemes for

Gaussian finite-state Markov channels with channel state information,” IEEE

Transactions on Information Theory, vol. 61, no. 7, pp. 3632–3650, 2015.

[114] L. Coviello, P. Minero, and M. Franceschetti, “Stabilization over Markov feed-

back channels,” in Proceedings of the 50th IEEE Conference on Decision and

Control, Orlando, FL, USA, 2011, Conference Proceedings, pp. 3776–3782.

[115] R. A. Horn and C. R. Johnson, Matrix analysis. New York: Cambridge

University Press, 1985.

Nanyang Technological University Singapore



154 BIBLIOGRAPHY

[116] A. A. Zaidi, T. J. Oechtering, S. Yüksel, and M. Skoglund, “Stabilization and
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