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Mean Square Stabilization of Linear Discrete-time Systems
over Power Constrained Fading Channels

Liang Xu, Yilin Mo, Lihua Xie∗ and Nan Xiao

Abstract—This paper considers the mean square stabilization problem
of discrete-time linear time-invariant (LTI) systems over a power con-
strained fading channel. Fundamental limitations on the mean square
stabilizability are obtained via information theoretic arguments. For
scalar systems and two-dimensional systems, necessary and sufficient
conditions for the mean square stabilizability are provided. Moreover, an
adaptive time division multiple access (TDMA) communication scheme
is designed for high-dimensional systems, which achieves a larger sta-
bilizability region than the conventional TDMA communication scheme,
and is proved to be optimal under certain situations.

I. INTRODUCTION

Control over communication channels/networks has been a hot
research topic in the past decade [1], [2], motivated by the rapid
development of wireless communication technologies that enable the
connection of geographically distributed systems and devices. Until
now, there have been plentiful results that reveal requirements on
communication channels to ensure the stabilizability of networked
control systems. For noiseless digital channels, the result is the
celebrated data rate theorem [3]. For noisy channels, the problem is
complicated by the fact that different channel capacities are required
under different stability definitions. For almost sure stability, the
Shannon capacity in relation to unstable dynamics of a system
constitutes the critical condition for its stabilizability [4]. While for
moment stability, the anytime capacity is introduced to characterize
the stabilizability conditions [5]. The anytime capacity has more
stringent reliability requirements than the Shannon capacity. Different
from the fact that the Shannon capacity can be calculated via the
maximization of mutual information, in general, there is no system-
atic method to calculate anytime capacities of channels. Currently,
stabilizability results for networked control only exist for specific
communication channels when moment stability is concerned. For
example, [6], [7] characterize the mean square stabilizability condi-
tions for discrete-time linear time-invariant (LTI) systems over fading
channels with linear control policies. [8]–[11] study the mean square
stabilization problem over additive white Gaussian noise (AWGN)
channels/networks and characterize the conditions to ensure mean
square stabilizability. Specifically, the results stated above deal with
fading or AWGN separately. While in wireless communications, it is
more practical to consider them as a whole.

In this paper, we are interested in a communication channel which
is subjected to both fading and AWGN, and also has a channel input
power constraint. We aim to find the critical condition on the channel
to ensure the mean square stabilizability of LTI systems. For scalar
systems, the problem lies in how to design encoders/decoders to
render the closed-loop system mean square stable. For AWGN chan-
nels, [11] propose encoder/decoder designs based on the Schalkwijk
coding scheme [12], which utilize the noiseless channel feedback
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to consecutively refine the estimation error. They show that such
encoding/decoding schemes can stabilize scalar unstable systems
with the minimal channel capacity requirement indicated in [9]. In
this paper, we show that a modification of this coding scheme can
stabilize scalar systems controlled over power constrained fading
channels. For vector systems, the difficulty is how to optimally
allocate channel resources among sub-systems. When the channel
is only with Gaussian noise, [11] employs a time-invariant allocation
with the time division multiple access (TDMA) strategy to solve
this problem. The transmission through the channel is scheduled
periodically. During every period, each sub-system is allocated a
fixed portion of transmission slots proportional to the logarithm of
the magnitude of the corresponding unstable eigenvalue. It is shown
that such allocation together with proper encoder/decoder pairs can
stabilize the vector system. Moreover, from the results in [9], we
know that such TDMA strategy is optimal, which means that the
fixed allocation with the TDMA strategy provides the exact channel
resource required for stabilization of each sub-system. However,
when fading exists, since the channel may have different capacity
at different time due to the stochastic nature of the fading, the time-
invariant allocation fails to provide the critical channel resource for
stabilization of each sub-system. Similar issue is also encountered in
networked control over rate limited communication channels. When
the digital channel is with constant data rate, [3] shows that the
time-invariant allocation achieved by time-sharing is optimal. When
the digital channel is with stochastic data rate, the time-invariant
allocation in [13] is only sufficient. The stabilizability region achieved
in [13] is a convex hull, which can be conservative even for two-
dimensional systems. Therefore, we propose to use time-varying
allocations to achieve larger stabilizability regions in this paper.

The contributions of this paper are three folds. Firstly, information
theoretic analysis is conducted for the networked control system,
which implies the existence of fundamental limitations imposed
by the power constrained fading channel on stabilizing unstable
LTI systems. Secondly, a communication protocol with proper en-
coder/decoder/scheduler for two-dimensional systems with unstable
eigenvalues having different magnitudes is proposed, which provides
the optimal allocation of channel resources to each sub-system.
Finally, an adaptive TDMA communication scheme is proposed for
general high-dimensional systems, which is shown to achieve a larger
stabilizability region than the conventional TDMA scheme.

This paper is organized as follows. The problem formulation is
provided in Section II. The fundamental limitation of stabilizability
over a power constrained fading channel is studied in Section III.
In Section IV, conditions for the mean square stabilizability are
provided. Section V provides numerical illustrations. This paper ends
with concluding remarks in Section VI.

Throughout the paper, R,Rn,N,N+ represent sets of real scalars,
n-dimensional real column vectors, natural numbers and positive
natural numbers, respectively. A sequence {χi}ti=0 is denoted by χt.
A′ denotes the transpose of matrix A. E{·} represents the expectation
operator. Ey{·} denotes the expectation conditioned on the event
Y = y. ln(·) denotes the natural logarithm.
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II. PROBLEM FORMULATION

This paper studies the following discrete-time linear system

xt+1 = Axt +But, (1)

where x ∈ Rn is the system state; u ∈ R is the control input and
(A,B) is controllable. The initial state x0 = [x1,0, . . . , xn,0]′ is
randomly generated from a Gaussian distribution with zero mean and
bounded covariance matrix. Without loss of generality, the following
assumption is made as in [11], [13].

Assumption 1: All the eigenvalues of A are either on or outside
the unit circle.

The configuration of the networked control system is depicted
in Fig. 1. The system state xt is observed and encoded by the
sensor/encoder ft(·) and transmitted to the controller/decoder ht(·)
through a slow fading channel. The encoder ft(·) and the decoder
ht(·) are allowed to be of any causal form and can use all the
available information till time t to generate their output. The fading
channel is modeled as

rt = gtst + wt, (2)

where st denotes the channel input, which has an average power
constraint, i.e., E{s2t} ≤ P ; rt represents the channel output; {gt} is
the independent and identically distributed (i.i.d.) channel fading with
bounded mean and variance; {wt} is an AWGN with zero-mean and
variance σ2

w. We also assume that x0, {gt}, {wt} are independent;
after each transmission, the instantaneous fading gt is known at the
decoder side and there exists a channel feedback that transmits one-
step delayed information of rt, gt from the decoder to the encoder.

Fig. 1: Networked control over a power constrained fading channel

Remark 1: The knowledge of the fading level at the decoder side
can be obtained for slow fading channels via receiver estimation [14].
Noiseless channel feedback may not be available in some settings.
However, there are situations where this is a good assumption [12],
[15]. Besides, channel feedback can be realized through the plant
with suitably designed control policies in some scenarios [16]. Thus
the assumption of noiseless channel feedback has been widely used
in networked control research; see e.g., [5], [10], [15].

In this paper, for a given power constrained fading channel (2),
we try to find requirements on the plant (1), such that there exists a
causal encoder/decoder pair {ft}, {ht} that can mean square stabilize
the system, i.e., to render limt→∞ E {xtx′t} = 0.

III. FUNDAMENTAL LIMITATIONS

Since the entropy power provides a lower bound for the mean
square value of the system state [9], we can treat the entropy power
as a measure of the uncertainty of the system state and analyze its
update, which provides a fundamental limitation of networked control
over fading channels. The result is formalized in the following lemma,
whose proof is given in Appendix A. The proof essentially follows
the same steps as in [9], [10], [13], however, with some differences
due to the channel structure.

Lemma 1: There exists a causal encoder/decoder pair {ft}, {ht},
such that the system (1) can be mean square stabilized over the
channel (2), only if

(detA)
2
nE
{

e−
2
n
ct
}
< 1, (3)

where ct = 1
2

ln(1 +
g2tP

σ2
w

) is the instantaneous Shannon channel
capacity of (2).

Let λ1, . . . , λd be the distinct unstable eigenvalues (if λi is
complex, we exclude from this list the complex conjugates λ̄i) of
A in (1) with |λ1| ≥ |λ2| ≥ . . . ≥ |λd|, and let mi be the algebraic
multiplicity of each λi. The real Jordan canonical form J of A then
has the block diagonal structure J = diag(J1, . . . , Jd) ∈ Rn×n [3],
where the block Ji ∈ Rµi×µi and | det Ji| = |λi|µi , with µi = mi if
λi ∈ R, and µi = 2mi otherwise. It is clear that we can equivalently
study the following dynamical system instead of (1)

xt+1 = Jxt +OBut, (4)

for some similarity matrix O. Let U = {1, . . . , d} denote the index
set of unstable eigenvalues. Notice that each block Ji has an invariant
real subspace Avi of dimension aivi, for any vi ∈ {0, . . . ,mi},
where ai = 1 if λi ∈ R, and ai = 2 otherwise. Consider the subspace
A formed by taking the product of the invariant sub-spaces Avi for
each real Jordan block. The total dimension of A is v =

∑
i∈U aivi.

Denote by xV , the states of x belonging to A. Then xV evolves as

xVt+1 = JVxVt+1 +QOBut, (5)

where Q is a transformation matrix and | det JV | =
∏
i∈U |λi|

aivi .
Since (4) is mean square stabilizable, (5) is also mean square stabi-
lizable. In view of Lemma 1, the following fundamental limitations
can be obtained [17].

Theorem 1: There exists a causal encoder/decoder pair {ft}, {ht},
such that the system (1) can be mean square stabilized over the
channel (2) only if [ln |λ1|, . . . , ln |λd|]′ ∈ Rd satisfy that for all
vi ∈ {0, . . . ,mi} and i ∈ U with v =

∑
i∈U aivi∑

i∈U

aivi ln |λi| < −
v

2
ln E

{(
σ2
w

σ2
w + g2tP

) 1
v

}
. (6)

Theorem 1 implies that even in the presence of a noiseless
channel feedback, there still exists a fundamental limitation for the
stabilizability of networked control over power constrained fading
channels. Besides, for scalar systems where A = λ1, ln |λ1| should
satisfy the following constraint to ensure mean square stabilizability

ln |λ1| < −
1

2
ln E

{
σ2
w

σ2
w + g2tP

}
. (7)

Moreover, for two-dimensional systems with distinct eigenvalues λ1,
λ2, the following requirement in addition to (7) should be satisfied

ln |λ1|+ ln |λ2| < − ln E

{(
σ2
w

σ2
w + g2tP

) 1
2

}
. (8)

IV. MEAN SQUARE STABILIZABILITY OVER POWER

CONSTRAINED FADING CHANNELS

The existence of a noiseless channel feedback implies that there
is no dual effect of control [18], i.e., separation between estimation
and control holds, which will simplify the coding design. Indeed, we
have the following lemma.

Lemma 2 ( [10]): If (A,B) is controllable, and there exists an
estimate x̂t for the initial system state x0, such that the estimation
error et = x̂t − x0 satisfies the following property,

E {et} = 0, (9)
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lim
t→∞

AtE
{
ete
′
t

}
(A′)

t
= 0, (10)

then the system (1) can be mean square stabilized by the controller
ut = K

(
Atx̂t +

∑t
i=1A

t−iBui−1

)
with K being selected such

that A+BK is stable.
Therefore, in the sequel we shall focus on the construction of

communication/estimation algorithms which can achieve (9) and (10).
To better convey our ideas, we start with scalar systems.

A. Scalar Systems

Theorem 2: Suppose A = λ1 ∈ R. There exists a causal
encoder/decoder pair {ft}, {ht}, such that the system (1) can be
mean square stabilized over the channel (2) if and only if (7) holds.

The necessity follows directly from Theorem 1. For the sufficiency,
we can show that a variation of the Schalkwijk coding scheme [12]
can stabilize the scalar system if (7) holds. The proof is similar to
that of the AWGN case in [10] with some differences due to the
existence of channel fading.

Proof: Suppose the estimation of x0 formed by the decoder is
x̂t at time t and the estimation error is et = x̂t − x0. The encoder
is designed as

s0 =

√
P

σ2
x0

x0, st =

√
P

σ2
et−1

(x̂t−1 − x0) , t ≥ 1, (11)

with σ2
x0 , σ2

et−1
representing the variance of x0 and et−1 respectively.

The decoder is designed as

x̂0 =

√
σ2
x0

P
r0, x̂t = x̂t−1 −

Egt{rtet−1}
Egt{r2t }

rt, t ≥ 1. (12)

Since at time t, the encoder knows the one-step delayed channel
output rt−1, the fading gt−1 and the decoding law, it can thus
simulate the decoder to obtain the estimate x̂t−1. With the designed
encoder (11) and decoder (12), it is easy to show that E {e0} = 0
and E

{
e20
}

is bounded. When t ≥ 1, we have from (12) that

et = et−1 −
Egt{rtet−1}

Egt{r2t }
rt. (13)

By induction arguments, we have E {et} = 0 for all t ≥ 1. Thus (9)
is satisfied. Denote êt−1 = Egt{rtet−1}/Egt{r2t }rt. Since êt−1

is the minimal mean square error estimate (MMSE) of et−1 based
on rt, from (13), we have E{e2t} = E{Egt{(et−1 − êt−1)2}} (a)

=

E{ σ2
w

σ2
w+g2tP

E{e2t−1}} = E{ σ2
w

σ2
w+g2tP

}tE{e20}, where (a) is a direct

consequence of the MMSE. Thus if λ2
1E{ σ2

w

σ2
w+g2tP

} < 1, the
designed encoder/decoder pair (11) and (12) can guarantee (10). In
view of Lemma 2, the sufficiency is proved.

Remark 2: Since gt is known at the decoder side, we can show
that a slight modification of the coding scheme in [11], where the
expectation is replaced with the conditional expectation with respect
to gt, can stabilize the closed-loop system without channel feedback
if (7) holds.

Remark 3: Theorem 2 indicates that the anytime capacity of the
power constrained fading channel (2) corresponding to the anytime-
reliability 2 ln |λ1| is Ca = − 1

2
ln E{ σ2

w

σ2
w+g2tP

}. From Jensen’s

inequality, we know that E{e−2ct} ≥ e−2E{ct} and the equality
holds if and only if ct is a constant. Thus it follows that Ca =
1
2

ln 1

E{e−2ct} ≤
1
2

ln 1

e−2E{ct}
= E {ct} = CShannon, which means

that the anytime capacity of the power constrained fading channel is
no greater than its Shannon capacity. Besides, for AWGN channels,
where ct is a constant, we have that the anytime capacity is equal to
its Shannon capacity, which coincides with the results in [5].

B. Two-Dimensional Systems

Theorem 3: Suppose n = 2. There exists a causal encoder/decoder
pair {ft}, {ht}, such that the system (1) can be mean square
stabilized over the channel (2) if and only if (6) holds.

In this subsection, we only provide the optimal communication
scheme for two-dimensional systems with unstable eigenvalues hav-
ing different magnitudes, i.e., A =

[
λ1 0
0 λ2

]
with λ1, λ2 ∈ R and

|λ1| > |λ2| ≥ 1, and in view of Theorem 1, it suffices to show that
a sufficient stabilizability condition is (7) and (8). For the case of
two-dimensional systems with eigenvalues of equal magnitude, the
communication scheme designed in the next subsection is shown to
be optimal; see Corollary 1.

1) Communication Structure: Since there are two sources x1,0,
x2,0, we design two encoder/decoder pairs in the communication
scheme and also design a scheduler to multiplex the channel use.
The i-th encoder/decoder pair is used to transmit the information of
xi,0. The scheduler determines which encoder/decoder pair should
use the channel. Suppose at time t, the i-th encoder/decoder pair has
access to the channel. The Encoder i first generates a symbol si,t
and transmits it to the decoder through the communication channel.
The Decoder i then forms an estimate x̂i,t based on the channel
output ri,t. The controller maintains an array x̂t = [x̂1,t, x̂2,t]

′ that
represents the most recent estimate of x0, which is set to 0 at t = 0.
When the information about xi,0 is transmitted, only x̂i,t is updated at
the controller side. The controller applies the control law in Lemma 2
to the plant at every step.

The structure of the communication protocol is illustrated in Fig. 2,
where tik is the time when the i-th encoder/decoder pair is scheduled
to use the channel for its k-th transmission.

Fig. 2: Transmission protocol configuration

2) Encoder/Decoder Design: The following encoding/decoding
strategy is used, which is modified from (11) and (12). The Encoder
i is designed as

si,ti0
=

√
P

σ2
xi,0

xi,0,

si,ti
k

=

√√√√ P

σ2
e
i,ti
k−1

(x̂i,ti
k−1
− xi,0), k ≥ 1,

(14)

where σ2
xi,0 and σ2

ei,t represent the variance of xi,0 and ei,t,
respectively, with ei,t being the i-th component of the estimation
error et. The Decoder i satisfies

x̂i,ti0
=

√
σ2
xi,0

P
ri,ti0

,

x̂i,ti
k

= x̂i,ti
k−1
−

Eg
ti
k

{ri,ti
k
ei,ti

k−1
}

Eg
ti
k

{r2
i,ti
k

} ri,ti
k
, k ≥ 1.

(15)

3) Scheduler Design: Throughout the paper, let δ =
σ2
w

σ2
w+P

.
Define the scheduling indication vector as Φ(t) = [φ1(t), φ2(t)]′

with φ1(t), φ2(t) ∈ {0, 1} and φ1(t) + φ2(t) = 1. When the i-
th encoder/decoder pair is scheduled to use the channel at time
t, the variable φi(t) is set to 1, otherwise it is set to 0. Let

Ψp(i, j) =
∏j
k=i (

σ2
w

σ2
w+g2

k
P

)
φp(k)

with p = 1, 2, i, j ∈ N+
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and i ≤ j. Similar to the analysis for scalar systems, we can
show that with the encoder (14) and the decoder (15), (9) always
holds and E{e2i,t} = E{Ψi(t

i
0 + 1, t)}E{e2

i,ti0
} for i = 1, 2.

Since φi(t) = 0 when t < ti0, to guarantee (10), we should
design schedulers to ensure that, under the stochastic channel fading,
limt→∞ E

{
λ2t
1 Ψ1(1, t)

}
= 0 and limt→∞ E

{
λ2t
2 Ψ2(1, t)

}
= 0, or

equivalently limt→∞ E{λ2t
1 Ψ1(1, t) + λ2t

2 Ψ2(1, t)} = 0. Thus the
scheduler should be designed to optimally allocate φ1 and φ2 to min-
imize λ2t

1 Ψ1(1, t) + λ2t
2 Ψ2(1, t). The optimal allocation should sat-

isfy
∑t
j=1 φ2(j) ln

σ2
w

σ2
w+g2jP

= 2t ln |λ1|
|λ2|

+
∑t
j=1 φ1(j) ln

σ2
w

σ2
w+g2jP

,

which is obtained by requiring λ2t
1 Ψ1(1, t) = λ2t

2 Ψ2(1, t). To this
end, Algorithm 1 is designed, which enforces φ1 and φ2 to meet the
above requirement when t is sufficiently large.

In Algorithm 1, α1 is the scheduler parameter to be defined latter;
T a
k =

∑k
j=1 T

d
j , k ∈ N+ is the time when k rounds of transmissions

are completed and T a
0 = 0; T d

k denotes the total time period to
complete the k-th round of transmissions, i.e., T d

k = T 1
k + T 2

k . Here
we assume that both the encoder and the decoder know the scheduling
algorithm. Since the switching among transmissions in Algorithm 1
relies on the fading process, which is known to the encoder and the
decoder, they are both aware of when to switch transmissions and
what is the encoder/decoder pair currently using the channel. Thus
we do not need to consider the coordination among encoders and
decoders. The scheduled transmission periods are depicted in Fig. 3.

Td
1

T1
1 T2

1

T a
0 = 0 T a

1

· · ·

Td
kT a

k−1 T a
k

T1
k T2

k

· · · time

Fig. 3: Scheduled transmissions with Algorithm 1

Algorithm 1: Optimal Scheduler for Two-dimensional Systems

In the k-th round of transmissions
• The first encoder/decoder pair is scheduled to use the channel until

Ta
k−1+T

1
k∑

t=Ta
k−1

+1

ln
σ2
w

σ2
w + g2tP

< α1 ln δ (16)

with T 1
k being the minimal time period satisfying (16).

– If
α1 ln δ + 2T 1

k ln
|λ1|
|λ2|

< 0 (17)

the second encoder/decoder pair is scheduled to use the
channel, until

Ta
k−1+T

1
k+T

2
k∑

t=Ta
k−1

+T1
k
+1

ln
σ2
w

σ2
w + g2tP

< 2(T 1
k+T

2
k ) ln

|λ1|
|λ2|

+α1 ln δ

(18)
with T 2

k being the minimal time period satisfying (18).
– Otherwise, set T 2

k = 0 and no transmission is carried out.
• Repeat this process.

It is clear from Algorithm 1 that T d
i is independent of T d

j

and T 2
i is independent of T 2

j for any i 6= j, i, j ∈ N+. The
switching condition (17) implies that if T 1

k < T c := α1 ln δ
2(ln |λ2|−ln |λ1|)

,
after the first encoder/decoder pair completes its transmission, the
second encoder/decoder pair can use the channel. Otherwise, the first
encoder/decoder pair continues to use the channel.

4) Scheduler Parameter Selection: If (7) holds, there exists θb
with 0 < θb < 1 such that E{( σ2

w

σ2
w+g2tP

)
θb
} = λ−2

1 . Let l(θa) =

2θa ln |λ1|
|λ2|
−ln E{( σ2

w

σ2
w+g2tP

)
θa
}−2 ln |λ1|. If (8) holds, since l(0) =

−2 ln |λ1| < 0, l( 1
2
) = − ln E{( σ2

w

σ2
w+g2tP

)
1
2 }− ln |λ1| − ln |λ2| > 0

and l(θa) is increasing in θa, there exists θa with 0 < θa <
1
2

such

that l(θa) = 0, i.e., E{( σ2
w

σ2
w+g2tP

)
θa
} = λ

2(θa−1)
1 λ−2θa

2 . The positive
constant α1 is then selected to satisfy

α1 > max{− ln(λ
2(2−θa)
1 λ2θa

2 )− ln 4

(1− 2θa) ln δ
,
− lnλ2

1 − ln 2

(1− θb) ln δ
}. (19)

5) Proof of Theorem 3: The necessity follows from Theorem 1.
The gist of the sufficiency proof is to show that during one round of
transmissions, the average value of λ2t

p Ψp(1, t) is smaller than one,

i.e., E{λ2Td
1

p Ψp(1, T
d
1 )} < 1 for p = 1, 2. Since the transmission

is scheduled periodically and {T d
k } is i.i.d., we may expect that

limt→∞ E
{
λ2t
p Ψp(1, t)

}
= 0 holds in the long run, which together

with Lemma 2 can guarantee the mean square stabilizability. The
detailed proof is given as follows. Let Wk = ln

σ2
w

σ2
w+g2

k
P

and

Lt =
∑t
k=1Wk. Then it is immediate from (16) that T 1

1 is
the first time such that LT1

1
< ϕ1T

1
1 + γ1 with ϕ1 = 0 and

γ1 = α1 ln δ. Since there exist 0 < θa <
1
2

, 0 < θb < 1 such that
E{eθa(Wk−ϕ1)} = λ

2(θa−1)
1 λ−2θa

2 , E{eθb(Wk−ϕ1)} = λ−2
1 , from

Lemma 4 in Appendix, we have

E{λ2(1−θa)T1
1

1 λ
2θaT

1
1

2 } ≤ λ2(1−θa)
1 λ2θa

2 δ−α1θa , (20)

E{λ2T1
1

1 } ≤ λ2
1δ
−α1θb . (21)

Suppose T 1
1 is known and T 1

1 < T c. Let Lt =
∑T1

1 +t

k=T1
1 +1

Wk.

In view of the stopping condition (18), we know that T 2
1 is the first

time starting from T 1
1 that LT2

1
< ϕ2T

2
1 + γ2 with ϕ2 = 2 ln |λ1|

|λ2|

and γ2 = 2T 1
1 ln |λ1|

|λ2|
+ α1 ln δ. Since E{eθa(Wk−ϕ2)} = λ−2

1 , in
view of Lemma 4 in Appendix, we have

Eζ{λ
2T2

1
1 } < λ2

1e−θaγ2 . (22)

where ζ denote the event T 1
1 < T c. Since θa < 1, when T 1

1 ≥ T c, we
have 2T 1

1 (θa−1) ln |λ1|
|λ2|
≤ 2T c(θa−1) ln |λ1|

|λ2|
< α1(1− θa) ln δ+

ln 2 + 2 ln |λ1|. Rearranging both sides and applying the natural ex-
ponential function, we have Ω := λ

2T1
1

2 − 2λ
2(1+T1

1 )
1 e−θaγ2δα1 < 0.

In view of the conditional expectation, we have

E{
2∑
i=1

λ
2Td

1
i Ψi(1, T

d
1 )} ≤ E{λ2Td

1
1 δα1 + λ

2Td
1

2 Ψ2(1, T d
1 )}

= E{Eζ{λ
2Td

1
1 δα1 + λ

2Td
1

2 Ψ2(1, T d
1 )}}

+ E{Eξ{λ
2Td

1
1 δα1 + λ

2Td
1

2 Ψ2(1, T d
1 )}}

(a)

≤ E{Eζ{2λ
2(T1

1 +T2
1 )

1 δα1}}+ E{Eξ{λ
2T1

1
1 δα1 + λ

2T1
1

2 }}
(b)

≤ E{Eζ{2λ
2(1+T1

1 )
1 e−θaγ2δα1}}+ E{Eξ{λ

2T1
1

1 δα1 + λ
2T1

1
2 }}

= E{2λ2(1+T1
1 )

1 e−θaγ2δα1}+ E{Eξ{λ
2T1

1
1 δα1 + Ω}}

(c)

≤ 2λ2
1δ
α1(1−θa)E{λ2(1−θa)T1

1
1 λ

2θaT
1
1

2 }+ E{Eξ{λ
2T1

1
1 δα1}}

(d)

≤ 2λ
2(2−θa)
1 λ2θa

2 δ(1−2θa)α1 + λ2
1δ

(1−θb)α1 ,

where ξ denotes the event T 1
1 ≥ T c; (a) follows from (18); (b)

follows from (22); (c) follows from the fact that when T 1
1 ≥ T c,

Ω < 0; (d) follows from (20) and (21). Since δ1−2θa < 1
and δ1−θb < 1, if α1 is selected to satisfy (19), we have that
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λ2
1δ

(1−θb)α1 < 1
2

, 2λ
2(2−θa)
1 λ2θa

2 δ(1−2θa)α1 < 1
2

, which guarantees

E{λ2Td
1

1 Ψ1(1, T d
1 ) + λ

2Td
1

2 Ψ2(1, T d
1 )} < 1. Thus we have

E{λ2Td
1

1 Ψ1(1, T d
1 )} < 1, E{λ2Td

1
2 Ψ2(1, T d

1 )} < 1. (23)

Since Ψp(1, T
a
k ) =

∏k
j=1 Ψp(T

a
j−1 + 1, T a

j−1 + T d
j ) and

{Ψp(T
a
j−1 + 1, T a

j−1 + T d
j )}kj=1 are i.i.d., we have

∞∑
k=0

E{
Td
k+1∑
j=1

λ
Ta
k+j
p Ψp(1, T

a
k )}

=

∞∑
k=0

E{
Td
k+1∑
j=1

λ
Td
0 +···+Td

k+j
p

k∏
j=1

Ψp(T
a
j−1 + 1, T a

j−1 + T d
j )}

=

∞∑
k=0

E{
λ
Td
k+1+2
p − λ2

p

λ2
p − 1

}E{λT
d
1
p Ψp(1, T

d
1 )}k, (24)

for p = 1, 2. In view of (23), we further
have that E{

∑∞
t=1(λ2t

1 Ψ1(1, t) + λ2t
2 Ψ2(1, t))} =∑∞

k=0 E{
∑Td

k+1

j=1 (λ
Ta
k+j

1 Ψ1(1, T a
k + j) + λ

Ta
k+j

2 Ψ2(1, T a
k + j))} ≤∑∞

k=0 E{
∑Td

k+1

j=1 (λ
Ta
k+j

1 Ψ1(1, T a
k ) + λ

Ta
k+j

2 Ψ2(1, T a
k ))} < ∞,

which implies that limt→∞ E
{
λ2t
1 Ψ1(1, t) + λ2t

2 Ψ2(1, t)
}

= 0.
The proof of sufficiency is completed. �

C. High-Dimensional Systems

For general n-dimensional systems, the communication struc-
ture is designed similarly to that of the two-dimensional sys-
tems. There are n encoder/decoder pairs of the form (14) (15)
to transmit the information of xi,0, i = 1, . . . , n. A scheduler
is designed to multiplex the channel use. Define φi, Ψi(·, ·),
i = 1, . . . , n analogously to the two-dimensional case. Similarly,
we can prove that with such communication structure, (9) al-
ways holds and to guarantee (10), we only need to ensure that,
limt→∞ E

{
λ2t
i Ψi(1, t)

}
= 0 for all i = 1, . . . , n, or equivalently,

limt→∞ E
{∑n

i=1 λ
2t
i Ψi(1, t)

}
= 0. Thus the schedulers should be

designed to optimally allocate φi to minimize
∑n
i=1 λ

2t
i Ψi(1, t).

The optimal choice of φ∗i should satisfy
∑t
j=1 φ

∗
i (j) ln

σ2
w

σ2
w+g2jP

=

(
∑t
j=1 ln

σ2
w

σ2
w+g2jP

+ 2t
∑n
i=1 ln |λi|)/n − 2t ln |λi|. However φ∗i

is determined by
∑t
j=1 ln

σ2
w

σ2
w+g2jP

, which is not causally available
when transmitting xi,0 at any time k < t. When n = 2, we can
achieve the desired optimal allocation by first fixing φ1 to be such
that

∑T1
1
j=1 φ1(j) ln (

σ2
w

σ2
w+g2jP

) < α1 ln δ and then requiring φ2 to
achieve (18). However, this method is not applicable to the case of
n ≥ 3. In the following, we propose a scheduler design for general
high-dimensional systems and show that such scheduling algorithm
is optimal under certain situations.

Theorem 4: There exists a causal encoder/decoder pair {ft}, {ht},
such that the system (1) can be mean square stabilized over the
channel (2) if there exist βi, i = 1, . . . , d, with 0 < βi ≤ 1 and∑d
i=1 βi = 1, such that for all i ∈ U ,

ln |λi| < −
1

2
ln E


(

σ2
w

σ2
w + g2tP

) βi
µi

. (25)

The above stabilizability result is achieved via an adaptive TDMA
scheduler. Different from the TDMA scheduler used in [17], the
adaptive TDMA scheduler used here is adapted to the fading process.
It switches the transmission only if certain stopping conditions are
satisfied. By incorporating the information of the fading process, a
larger stabilizability region is achieved. The detailed scheduler design
and stability analysis is given as follows.

1) Scheduling Algorithm: The scheduler is described in Algorithm
2, where the parameters αi, i = 1, . . . , n are defined in the sequel;
T a
k =

∑k
j=1 T

d
j , k ∈ N+ is the time when k rounds of transmissions

are completed and T a
0 = 0, and T d

k denotes the total time period
to complete the k-th round of transmissions, i.e. T d

k =
∑n
i=1 T

i
k.

Since the fading {gt} is i.i.d., it is clear from Algorithm 2 that T ik
is independent of T jk , for any i 6= j, i, j ∈ {1, 2, . . . , n}, k ∈ N+

and the random variables {T d
1 , T

d
2 , . . .} are i.i.d..

Algorithm 2: Adaptive TDMA Scheduler for n-dimensional Systems

In the k-th round of transmissions
• The first encoder/decoder pair is scheduled to use the channel,

until
Ta
k−1+T

1
k∑

t=Ta
k−1

+1

ln
σ2
w

σ2
w + g2tP

< α1 ln δ, (26)

with T 1
k being the minimal time period satisfying (26).

• . . .
• The j-th encoder/decoder pair is scheduled to use the channel,

until

Ta
k−1+T

1
k+···+T

j−1
k

+T
j
k∑

t=Ta
k−1

+T1
k
+···+T j−1

k
+1

ln
σ2
w

σ2
w + g2tP

< αj ln δ, (27)

with T jk being the minimal time period satisfying (27).
• . . .
• The n-th encoder/decoder pair is scheduled to use the channel,

until

Ta
k−1+T

1
k+···+T

n−1
k

+Tnk∑
t=Ta

k−1
+T1

k
+···+Tn−1

k
+1

ln
σ2
w

σ2
w + g2tP

< αn ln δ, (28)

with Tnk being the minimal time period satisfying (28).
• Repeat this process.

2) Scheduler Parameter Selection: If (25) holds, there exist θi,

i = 1, . . . , d with 0 ≤ θi < βi
µi

, such that E{( σ2
w

σ2
w+g2tP

)
θi
} = |λi|−2.

The positive constants αj , j = 1, . . . , n are selected as follows:
if xj,0 is the j-th component of x0 in (4) that corresponds to the
eigenvalue λi, i ∈ U , then αj is selected to be

αj = − 2nβi
µi ln δ

(max
k∈U

ln |λk|
βk/µk − θk

+ ι), j = 1, . . . , n, (29)

with ι being an arbitrary positive constant.
3) Proof of Theorem 4: Here we only consider the case that

λ1, . . . , λd are real and mi = µi = 1. We can easily extend
the analysis to other cases by combining the following analysis
with the argument used in Chapter 2 of [2]. The sufficiency proof
is focused on showing that limt→∞ E

{
λ2t
i Ψi(1, t)

}
= 0 for all

i = 1, . . . , n under Algorithm 2. Similar to the derivation of (21),

with Algorithm 2, we can show that E{λ2T
j
1

i } ≤ δ−αjθiλ2
i . Since

T 1
1 , T

2
1 , . . . , T

n
1 are independent with each other, we further have

E{λ2
∑n
j=1 T

j
1

i δαi} ≤ δαi−θi
∑n
j=1 αjλ2n

i . If αi is selected as (29),
then

∑n
i=1 αi = − 2n

ln δ
(maxj

ln |λj |
βj−θj

+ ι) and αi/(
∑n
j=1 αj) = βi

for all i = 1, . . . , n. Thus we have

E

{
λ
2
∑n
j=1 T

j
1

i δαi
}
≤ (δβi−θi)

∑n
j=1 αjλ2n

i

= (δβi−θi)
− 2n

ln δ
(maxj

ln |λj |
βj−θj

+ι)
(δβi−θi)

2n
ln δ

ln |λi|
βi−θi

= (δβi−θi)
2n
ln δ

(
ln |λi|
βi−θi

−maxj
ln |λj |
βj−θj

−ι)
.
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Since θi < βi and 0 < δ < 1, we have

E
{
λ
2Td

1
i δαi

}
= E

{
λ
2
∑n
j=1 T

j
1

i δαi
}
< 1, (30)

for all i = 1, . . . , n. Since Ψi(1, T
a
k ) =

∏k
j=1 Ψi(T

a
j−1 +

1, T a
j−1 + T d

j ) and Ψi(T
a
j−1 + 1, T a

j−1 + T d
j ) < δαi

for any j ∈ N+, in view of (30), we have

E{
∑∞
t=1 λ

2t
i Ψi(1, t)} =

∑∞
k=0 E{

∑Td
k+1

j=1 λ
2(Ta

k+j)

i Ψi(1, T
a
k +

j)} <
∑∞
k=0 E{

∑Td
k+1

j=1 λ
2(Ta

k+j)

i

∏k
j=1 Ψi(T

a
j−1 +

1, T a
j−1 + T d

j )} <
∑∞
k=0 E{

∑Td
k+1

j=1 λ
2(Ta

k+j)

i δkαi} =∑∞
k=0 E{λ2Td

1
i δαi}kE{(λ2Td

k+1+2

i − λ2
i )/(λ

2
i − 1)} < ∞. Thus

limt→∞ E
{
λ2t
i Ψi(1, t)

}
= 0 for all i = 1, . . . , n. The proof of

sufficiency is completed. �
Remark 4: The stabilizability conditions in the derived theorems

involve the calculation of the expectation E{( σ2
w

σ2
w+g2tP

)β} for some
β. For some fading distributions, we can give the closed form of
this term. For example, when gt ∼ Bernoulli(ε)1, this term is given
by (1 − ε)( σ2

w
σ2
w+P

)β + ε. For other fading distributions that are not
possible to calculate the closed forms, this term can be evaluated
numerically via MATLAB or Mathematica.

Remark 5: In Theorem 4, the stabilizability condition is expressed
in terms of of parameters {βi}i∈U . βi has the physical interpretation
that it represents the fraction of channel resources that is allocated to
the sub-dynamics corresponding to the eigenvalue λi. For the given
communication channel and system matrix, the existence of {βi}i∈U
can be checked via the following feasibility problem

∃βi > 0, i = 1, . . . , d

s.t.

d∑
i=1

βi = 1 (31)

|λi|2 < li(βi), i = 1, . . . , d (32)

with li(βi) := E{( σ2
w

σ2
w+g2tP

)
βi
µi }−1. Since li(βi) is increasing in

βi and li(0) = 1 ≤ |λi|2, there exists β∗i ≥ 0 such that li(β∗i ) =
|λi|2(binary search can be used to find equation roots to obtain β∗i ). In
view of (32), any feasible βi must satisfy that βi > β∗i . If

∑
i β
∗
i ≥ 1,

there exists no feasible solution since (31) is violated. Otherwise, one
feasible solution is given by βi =

β∗i∑
i β
∗
i

.
Remark 6: Theorem 4 indicates that the stabilzable region of

[ln|λ1|, . . . , ln|λd|]′ ∈ Rd for a given power constrained fading
channel achieved with Algorithm 2 is

S = ∪βi>0,
∑
i βi=1 "i∈U [0,−1

2
lnE


(

σ2
w

σ2
w + g2tP

) βi
µi

),

where " denotes the Cartesian product. We can prove that S is con-
vex. Suppose x = [x1, . . . , xd]

′ ∈ S and y = [y1, . . . , yd]
′ ∈ S. Then

there exist [%1, . . . , %d]
′ with %i > 0,

∑
i %i = 1 and [η1, . . . , ηd]

′

with ηi > 0,
∑
i ηi = 1 such that xi < − 1

2
lnE{( σ2

w

σ2
w+g2tP

)
%i
µi }, yi <

− 1
2
lnE{( σ2

w

σ2
w+g2tP

)
ηi
µi } for i = 1, . . . , d. Let z = [z1, . . . , zd]

′ =

cx + (1− c)y with 0 < c < 1, then zi = cxi + (1− c)yi and

zi < −
c

2
lnE{( σ2

w

σ2
w + g2tP

)
%i
µi } − 1− c

2
lnE{( σ2

w

σ2
w + g2tP

)
ηi
µi }

= −1

2
lnE{( σ2

w

σ2
w + g2tP

)
%i
µi }cE{( σ2

w

σ2
w + g2tP

)
ηi
µi }1−c

1Pr(gt = 0) = ε, Pr(gt = 1) = 1 − ε, where gt = 0 represents the
appearance of fading and gt = 1 means that the channel is free of fading.

(a)

≤ −1

2
lnE{( σ2

w

σ2
w + g2tP

)
c%i+(1−c)ηi

µi },

where (a) follows from the Hölder’s inequality. Thus there exist βis
with βi = c%i + (1 − c)ηi > 0 and

∑
i βi = 1 such that zi <

− 1
2
lnE{( σ2

w

σ2
w+g2tP

)
βi
µi } for all i = 1, . . . , d, which means z ∈ S.

Thus S is convex.
Remark 7: The sufficiency achieved via the TDMA scheduler

in [17] can be alternatively formulated as follows: if there exist βis
with 0 < βi ≤ 1 and

∑d
i=1 βi = 1, such that

ln |λi| < −
βi
2µi

ln E

{
σ2
w

σ2
w + g2tP

}
, (33)

for all i = 1, 2, . . . , d, then the system (1) can be mean square

stabilized. Since l(z) = z
βi
µi with 0 < βi

µi
≤ 1 is concave,

from the Jensen’s inequality, we have − βi
2µi

ln E{ σ2
w

σ2
w+g2tP

} ≤

− 1
2

ln E{( σ2
w

σ2
w+g2tP

)

βi
µi }. Thus any λi that satisfies (33) must also

satisfy (25) with the same βi, which implies that the adaptive TDMA
scheduler in this paper achieves a stabilizability region no smaller
than the TDMA scheduler in [17].

Remark 8: If gt = 1, channel (2) degenerates to an AWGN channel
and the necessary and sufficient condition to ensure mean square
stabilizability, following from (6) and (25), is

∑d
i=1 µi ln |λi| <

1
2

ln(1 + P
σ2
w

), which recovers the results in [8], [9]. If gt ∼
Bernoulli(ε), by taking the limit σ2

w → 0 and P → ∞, we can
obtain that the stabilizability condition over an erasure channel is
λ2
1 <

1
ε

, which degenerates to the results in [6], [19].
When all the strictly unstable eigenvalues have the same magni-

tude, we can show that the sufficient condition (25) coincides with
the necessary condition (6), as shown in the following corollary.

Corollary 1: Suppose |λ1| = · · · = |λdu | = λ̃ > 1 and
|λdu+1| = · · · = |λd| = 1 with 1 ≤ du ≤ d. There exists
an encoder/decoder pair {ft}, {ht}, such that the system (1) can
be mean square stabilized over the channel (2) if and only if

ln λ̃ < − 1
2

ln E{( σ2
w

σ2
w+g2tP

)
1

µ1+···+µdu }.
Remark 9: The results derived in this paper for the power con-

strained fading channel (2) can be easily extended to the following
channel model

rt = gt(st + wt), (34)

which is suitable for modeling the digital erasure channel with {wt}
denoting the quantization error and {gt} representing the erasure
process. If gt = 0, the communication channel cannot transmit any
information. Otherwise, we can always multiply the received signal
rt by 1/gt at the decoder side, and thus the resulted channel is
equivalent to an AWGN channel. From this perspective, channel (34)
is essentially the power constrained lossy channel studied in [20].
Thus the results derived in [20] apply directly to the channel (34).

V. NUMERICAL ILLUSTRATIONS

A. Scalar Systems

The authors in [21] derive the necessary and sufficient condition
for mean square stabilization of scalar LTI systems over a power
constrained fading channel with linear encoders/decoders as 1

2
ln(1+

µ2
gP

σ2
gP+σ2

w
) > ln |λ| with µg and σ2

g being the mean and variance of
gt. We can similarly define the mean square capacity of the power
constrained fading channel achieved with linear encoders/decoders
as Cm = 1

2
ln(1 +

µ2
gP

σ2
gP+σ2

w
). Assume that the fading follows the

Bernoulli distribution, i.e., gt ∼ Bernoulli(ε), and let P = 1 and
σ2
w = 1, the channel capacities in relation to the erasure probability
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are plotted in Fig. 4. It is clear that CShannon ≥ Ca ≥ Cm at any
erasure probability ε. This result is obvious since we have proved that
the Shannon capacity is no smaller than the anytime capacity. Besides,
we have more freedom in designing the causal encoder/decoder pair
compared with the linear encoder/decoder pair, thus allowing to
achieve a higher capacity. The three kinds of capacity degenerate
to the same value when ε = 0 and ε = 1, which represent the
AWGN channel case and the disconnected case respectively. This
fact is trivial for the disconnected case and is consistent for the
AWGN channel case in [5], [8], [9], in which the authors show that
the anytime capacity is equal to the Shannon capacity for AWGN
channels and causal encoder/decoder pair cannot provide any benefits
in increasing the channel capacity.
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Fig. 4: Comparison of different channel capacities for scalar systems

B. Vector Systems

Consider a two-dimensional system (4) with J =
[
λ1 0
0 λ2

]
, and

the fading in (2) follows the Rayleigh distribution with probability

density function l(z;σ) = z
σ2 e
− z2

2σ2 , z ≥ 0. Let P = 1, σ2
w = 1,

σ = 2, then the necessary stabilizability region, the sufficient stabi-
lizability regions achieved with the optimal scheduler in Algorithm
1, the adaptive TDMA scheduler in Algorithm 2, the conventional
TDMA scheduler in [17] and with linear encoders/decoders in [21],
in terms of (ln |λ1|, ln |λ2|) are plotted in Fig. 5. We can observe
that the region of (ln |λ1|, ln |λ2|) that can be stabilized with the
designed causal encoders/decoders is much larger than that by linear
encoders/decoders in [21]. Thus by extending encoder/decoders from
linear settings to causal requirements, we can tolerate more unstable
systems. It is clear from the figure that the optimal scheduler proposed
in Algorithm 1 covers the whole necessary stabilizability region. Be-
sides, as noted in Remark 7, the adaptive TDMA scheduler achieves
a larger stabilizability region than that of the conventional TDMA
scheduler. Moreover, the adaptive TDMA scheduler is optimal at
three points, i.e., |λ1| = |λ2|, |λ1| = 1 and |λ2| = 1. This is
consistent with Corollary 1.

VI. CONCLUSIONS

This paper has characterized the requirement for a power con-
strained fading channel to allow the existence of a causal en-
coder/decoder pair that can mean square stabilize a discrete-time
LTI system. Fundamental limitations have been provided in terms
of the system dynamics and channel parameters. Optimal commu-
nication designs have been provided for scalar systems and two-
dimensional systems. For high-dimensional systems, a new commu-
nication scheme has also been provided, which can achieve larger
stabilizability regions than existing results. What would the results
be when there is no channel feedback or the channel fading is
correlated is still under investigation. Further work will also be
devoted to shrinking the gap between the necessary condition and
the sufficient condition for high-dimensional systems. How to design

Sufficiency with Adaptive TDMA Scheduler

Necessity and

Sufficiency with Optimal Scheduler

Sufficiency with

TDMA Scheduler

λ1 = λ2

 Necessity and Sufficiency

 with Linear Encoder/Decoder
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0.2

0.3

0.4
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0.7

ln|λ1|

ln
|λ
2
|

Fig. 5: Comparison of stabilizability regions for two-dimensional
systems

communication/control schemes that only use finite memory is also
of interest.

APPENDIX

The following definitions are needed in the proof of Lemma 1 and
are stated first, which are borrowed from [9]. All random variables
are assumed to exist on a common probability space. The probability
density of a random variable X is denoted by pX , and the probability
density of X conditioned on the event Y = y is denoted by pX|y . The
differential entropy of X is defined by H(X) = −E {ln pX}, pro-
vided that the defining integral exists. Denote the entropy of X given
the event Y = y by Hy(X) = H(X|Y = y) = −Ey{ln pX|y},
and the random variable associated with Hy(X) by HY (X). The
conditional entropy of X given the event Y = y and averaged
over Y is defined by H(X|Y ) = E {HY (X)}, and the conditional
entropy of X given the events Y = y and Z = z and averaged only
over Y by Hz(X|Y ) = Ez{HY,Z(X)}. The mutual information
between two random variables X and Y given the event Z = z
is defined by Iz(X;Y ) = Hz(X) − Hz(X|Y ). Given a random
variable X ∈ Rn with entropy H(X), the entropy power of X is
defined by N(X) = 1

2πe
e

2
n
H(X). Denote the entropy power of X

given the event Y = y by Ny(X) = 1
2πe

e
2
n
Hy(X), and the random

variable associated with Ny(X) by NY (X). The conditional entropy
power of X given the event Y = y and averaged over Y is defined by
N(X|Y ) = E {NY (X)}. For any encoding strategy, the following
lemma shows that the amount of information that the channel output
contains about the source equals to that of the channel output contains
about the channel input.

Lemma 3: Let X be an n-dimensional random variable, f(X)
be a function of X , and Y = f(X) + N with N being a random
variable that is independent of X . Then I(X;Y ) = I(f(X);Y ).

Proof: Since H(Y |X) = H(Y |X, f(X)) ≤ H(Y |f(X)), we
have H(Y ) = I(X;Y ) + H(Y |X) ≤ I(X;Y ) + H(Y |f(X)).
Thus H(Y ) − H(Y |f(X)) = I(Y ; f(X)) ≤ I(X;Y ). Besides,
since X → f(X) → Y forms a Markov chain, Y → f(X) → X
also forms a Markov chain. The data processing inequality [22] then
implies that I(X;Y ) ≤ I(f(X);Y ). Combining the two facts, we
have I(X;Y ) = I(f(X);Y ).

Proof of Lemma 1: Here we use the uppercase letters
X,S,R,G to denote random variables of the system state,
the channel input, the channel output and the channel
fading. We use the lowercase letters x, s, r, g to denote their
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realizations. The average entropy power of Xt conditioned
on (Rt, Gt) is N(Xt|Rt, Gt) = E{NRt,Gt(Xt)}

(a)
=

E{ERt−1,Gt{NRt,Gt(Xt)}}
(b)
= 1

2πe
E{ERt−1,Gt{e

2
n
HRt,Gt (Xt)}}

where (a) follows from the law of total expectation and (b) from
the definition of entropy power. Since

Ert−1,gt{e
2
n
HRt,Gt (Xt)}

(c)

≥ e
2
n
E
rt−1,gt

{HRt,Gt (Xt)}

(d)
= e

2
n
H
rt−1,gt

(Xt|Rt) = e
2
n

(
H
rt−1,gt

(Xt)−Irt−1,gt
(Xt;Rt)

)

≥ e
2
n

(
H
rt−1,gt

(Xt)−Irt−1,gt
(Xt;Rt)

)
(e)
= e

2
n

(
H
rt−1,gt

(Xt)−Irt−1,gt
(St;Rt)

)
(f)

≥ e
2
n

(
H
rt−1,gt

(Xt)−ct
)

(g)
= e−

2
n
cte

2
n
H
rt−1,gt−1 (Xt),

where (c) follows from Jensen’s inequality; (d) from the definition
of conditional entropy; (e) from Lemma 3; (f) from the definition of
channel capacity, i.e., Irt−1,gt(St;Rt) ≤ ct with ct = 1

2
ln(1+

g2tP

σ2
w

)

being the instantaneous Shannon channel capacity and (g) from
the fact that Gt is independent of Xt, we have N(Xt|Rt, Gt) ≥
1

2πe
E{e−

2
n
cte

2
n
H
Rt−1,Gt−1 (Xt)} = E{e−

2
n
ct}N(Xt|Rt−1, Gt−1).

Since e
2
n
Hrt,gt (Xt+1) = e

2
n
Hrt,gt (AXt+BUt)

(h)
= e

2
n
Hrt,gt (AXt)

(i)
=

e
2
n
Hrt,gt (Xt)+

2
n

ln | detA| = (detA)
2
n e

2
n
Hrt,gt (Xt), where

(h) follows from the fact that ut = ht(r
t, gt) and (i)

from Theorem 8.6.4 in [22], we have N(Xt+1|Rt, Gt) =

E{ 1
2πe

(detA)
2
n e

2
n
HRt,Gt (Xt)} = (detA)

2
nN(Xt|Rt, Gt).

In view of above results, we have N(Xt+1|Rt, Gt) ≥
(detA)

2
nE{e−

2
n
ct}N(Xt|Rt−1, Gt−1). In light of Proposition

II.1 in [9], to ensure mean square stability, N(Xt+1|Rt, Gt)
should converge to zero asymptotically, which requires
(detA)

2
nE{e−

2
n
ct} < 1. The proof is completed. �

Lemma 4: Suppose {Wi} with Wi ≤ 0 is i.i.d. with bounded non-
zero mean, define Lt =

∑t
i=1Wi and let T be the first time such

that LT < ϕT + γ with ϕ ≥ 0, γ < 0. If there exists θ ≥ 0 such
that E{eθ(Wi−ϕ)} = λ−2, then E{λ2T } ≤ λ2e−θγ .

Proof: When ϕ > 0, since Lt is non-increasing and ϕt +
γ is increasing, the stopping time T is bounded. When ϕ =
0, T is unbounded if and only γ ≤ limt→∞

∑t
i=1Wi ≤

0. Since {Wi} is i.i.d., in view of the law of large num-
bers, we have Pr(limt→∞

∑t
i=1Wi/t = E {Wi}) = 1. Thus

Pr(limt→∞
∑t
i=1Wi = ∞) = 1, which implies Pr(γ ≤

limt→∞
∑t
i=1Wi ≤ 0) = 0. Thus T is almost surely bounded.

Define Yt = eθLt+bt with b = 2 ln |λ| − θϕ, then
E {Yt+1|Yt, . . . , Y1} = YtE

{
eθWt+1+b

}
= Yt. Thus Yt is a

martingale. Since T is either a bounded or an almost surely bounded
stopping time, in view of the optional stopping theorem [23], we have
E {YT } = E {Y1} = 1.

Define η = ϕT + γ − LT . Since LT < ϕT + γ and LT−1 ≥
ϕ(T − 1) + γ, we have η > 0. When ϕ = 0, since LT−1 ≥ γ, we
have η = γ − LT = γ − LT−1 −WT ≤ −WT . When ϕ > 0 and
ϕ(T − 1) + γ ≤ LT−1 ≤ ϕT + γ, we have η = ϕT + γ − LT =
ϕ(T − 1) + γ − LT−1 + ϕ −WT ≤ ϕ −WT . When ϕ > 0 and
ϕT + γ < LT−1 ≤ 0, we have η = ϕT + γ − LT = ϕT + γ −
LT−1 −WT < −WT . Thus in general, η ≤ ϕ−WT .

Since E{YT } = E{eθ(ϕT+γ−η)+bT } = eθγE{e(θϕ+b)T e−θη} =
eθγE{λ2T e−θη} = 1, and E{λ2T e−θη} ≥ E{λ2T eθ(WT−ϕ)} =

E{ET {λ2T eθ(WT−ϕ)}} = E{λ2TET {eθ(WT−ϕ)}}
(a)
= λ−2E{λ2T }

where (a) follows from the definition of θ, we have E
{
λ2T

}
≤

λ2e−θγ .
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