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Mean Square Stabilization over Gaussian
Finite-State Markov Channels

Liang Xu, Lihua Xie∗ and Nan Xiao

Abstract—The paper studies the mean square stabilization
problem of discrete-time linear time-invariant systems over
Gaussian finite-state Markov channels, which suffer from both
signal-to-noise ratio constraint and correlated channel fading
modeled by a Markov process. The existence of a fundamental
limitation for mean square stabilization is firstly established.
Then sufficient stabilization conditions under a Time Division
Multiple Access (TDMA) communication schemes are derived in
terms of the stability of a Markov Jump Linear System (MJLS).
Moreover, we present a necessary and sufficient condition for
mean square stabilization of two-dimensional systems controlled
over power constrained Markov lossy channels. Furthermore,
improved sufficient stabilization conditions are derived based
on an adaptive TDMA communication scheme for general high-
dimensional systems, which achieves a larger stabilization region
than the TDMA communication scheme.

I. INTRODUCTION

Networked control has been an active research topic in
past decades [1], [2]. Until now, there are plentiful results
revealing how communication channels affect the stability
of networked control systems [3]–[8]. These results show
that the stabilizability conditions are determined by unstable
eigenvalues of the system matrix and channel parameters (in
terms of data rate, signal-to-noise ratio, packet loss probability
and so on).

Due to its ease of installation and maintenance, wireless
communication has been widely used in networked control
systems. However, since fading is unavoidable in wireless
communications in urban, indoor and underwater environ-
ments [9], [10], in this paper we are interested in networked
control over an analog channel that suffers from both signal-
to-noise ratio constraint and time-varying channel fading.
Previously, the case with independent and identically dis-
tributed (i.i.d.) channel fading has been studied in [8], [11].
However, the i.i.d. assumption fails to capture the correlation
of channel conditions over time. Since Markov models are
simple and effective in capturing temporal correlations of
channel conditions [10], [12], [13], we are interested in the
stabilization problem of discrete-time Linear Time Invariant
(LTI) systems controlled over Gaussian finite-state Markov
channels [14], where the channel fading is modeled by a
time-homogeneous Markov process. Due to the existence of
correlations of channel conditions over time, the methods used
to deal with the i.i.d. channel fading in [8], [11] cannot be
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applied directly to the Markov channel fading case. Besides,
the work [8] only considers the state feedback case and the
plant under investigation is free of process and measurement
noises. The output feedback case and how the plant noises
affect the stabilizability of the networked control system have
yet been studied.

In this paper, we propose observer/estimator designs and
extend the channel resource allocation schemes in [8], [11] to
the Gaussian Markov channel case and derive necessary and
sufficient stabilization conditions by utilizing the stability of a
Markov Jump Linear System (MJLS) and the i.i.d. property of
the sojourn time of the Markov chain [15]. The contributions
of this paper are three folds: firstly, it is shown that there exists
a fundamental limitation for the mean square stabilization
over Gaussian finite-state Markov channels; secondly, suffi-
cient stabilization conditions under TDMA communication
schemes are derived; thirdly, for power constrained Markov
lossy channels, the necessary and sufficient stabilization con-
dition is presented for two-dimensional systems and improved
sufficient stabilization conditions are derived for general high-
dimensional systems with an adaptive TDMA protocol.

The paper is organized as follows. The problem formulation
and preliminaries are given in Sec. II. The existence of
fundamental limitations for stabilization is demonstrated in
Sec. III. Sufficient stabilization conditions for Gaussian finite-
state Markov channels and power constrained Markov lossy
channels are provided in Sec. IV and Sec. V, respectively.
This paper ends with some concluding remarks in Sec. VI.

Notions. R, N and N+ are sets of real numbers, natural
numbers and positive integers, respectively. ρ(·) denotes the
spectral radius. e represents the Euler’s number. E{·} is the
expectation operator. Ey{·} denotes the expectation condi-
tioned on the event Y = y. {xi}ti=0 represents the sequence
x0, x1, . . . , xt and is also written as xt when the meaning is
clear from the context.

II. PROBLEM FORMULATION AND PRELIMINARIES

This paper studies the following discrete-time linear system

xt+1 = Axt +But + vt,

yt = Cxt + wt,
(1)

where xt ∈ Rn is the system state; yt ∈ Rm is the
system output; ut ∈ R is the control input; vt, wt are the
process noise and measurement noise, respectively; (A,B) is
stabilizable; (C,A) is observable; {vt}t≥0 and {wt}t≥0 are
i.i.d. and with zero mean and bounded covariance matrices
and are independent of the initial state x0 which follows a zero
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mean Gaussian distribution with a bounded covariance matrix.
Without loss of generality, we make the following assumption
as in [16], [17].

Assumption 1: All the eigenvalues of A are either on or
outside the unit circle.

This paper considers a networked control setting, where yt
is observed and encoded with the law ft(·) and transmitted to
the controller through a Gaussian Markov channel to generate
the control signal ut with the law ht(·). The Markov channel
corrupted with Gaussian noises is modeled as

rt = γtst + ωt, (2)

where st denotes the channel input satisfying an average power
constraint, i.e., E

{
s2
t

}
≤ P ; rt is the channel output; γt is

the channel fading which represents the variation of received
signal power over time (also known as the channel state) and
ωt is an additive white Gaussian noise (AWGN) with zero-
mean and bounded variance σ2

ω . Different Markov models
can be assumed for γt. In this paper, we are interested in
two kinds of Gaussian Markov channels: the Gaussian finite-
state Markov channel and the power constrained Markov lossy
channel.

Gaussian Finite-State Markov Channels: The channel
state {γt}t≥0 is modeled as a time-homogeneous ergodic
Markov process. γt takes values in a finite set of distinct
non-negative values {r1, r2 . . . , rl}, which represents different
fading levels [14]. The Markov transition probability matrix
Q is defined by Q = [qij ] with

qij = Pr{γt+1 = rj |γt = ri}. (3)

Power Constrained Markov Lossy Channels: The channel
state {γt}t≥0 is modeled as a Markov lossy process. γt only
switches between two states: the state r1 = 0 and the state
r2 = 1, where r1 = 0 indicates the appearance of channel
fading and the transmission fails and r2 = 1 means that the
channel is free of fading and the transmission is successful.
Therefore, the Markov process has the following transition
probability matrix

Q =

[
1− q q
p 1− p

]
, (4)

where p represents the failure rate and q denotes the recovery
rate. To avoid any trivial case, p and q are assumed to be
strictly positive and less than 1, i.e., 0 < p, q < 1, so
that the Markov process is ergodic. The power constrained
Markov lossy channel is one special kind of Gaussian finite-
state Markov channels, and has several unique properties that
allow to derive refined results compared to general finite-state
Markov channels.

For both kinds of channels, we assume that {ωt}t≥0 is i.i.d.;
x0, {vt}t≥0, {wt}t≥0, {γt}t≥0 and {ωt}t≥0 are independent;
the channel state information is known at the receiver side
and the channel output and the channel state are fed back to
the transmitter through a noiseless feedback channel with one-
step delay [8]. The feedback configuration and the information
structure of the sensor and controller are depicted in Fig. 1.

Remark 1: The remote control setting in Fig. 1 has been
widely adopted in networked control research (e.g., [17]–[19]).

xt+1 = Axt +But + vt, yt = Cxt + wt

Plant

st = ft(yt, rt−1, γt−1)

Sensor

ut = ht(rt, γt)

Controller

⊗⊕ γtωt

strt

ut yt

rt−1, γt−1

Fig. 1: Networked control over Gaussian Markov channels

The aerial robotics research platform in [20] is one example of
our feedback control configuration. The attitude and position
of the aerial robot are observed via a sensing system such as
a motion capture system. The observed value is processed on
one or more standard computers and then transmitted to the
aerial robot over wireless channels to implement the control
algorithm.

Throughout the paper, a stochastic system with state xt is
mean square stable if supt E {x′txt} < ∞. We try to charac-
terize requirements on Gaussian finite-state Markov channels
and power constrained Markov lossy channels such that there
exist sensing and controlling strategies {ft(·)}t≥0, {ht(·)}t≥0

which can stabilize the LTI dynamics (1). In following, we
present several preliminary results that would be used in the
subsequent analysis.

A. Stability of Markov Jump Linear Systems

Denote the instantaneous channel capacity as ct = 1
2 ln(1+

γ2
tP
σ2
ω

). Since {γt}t≥0 is Markovian, so is {ct}t≥0 and ct takes

values in a finite set {c1, . . . , cl} with ci = 1
2 ln(1 +

r2iP
σ2
ω

) and
is with the same Markov transition probability (3). Consider
the MJLS defined by

zt+1 = λ2e−
2
o ctzt + a, (5)

where zt ∈ R with z0 < ∞; λ ∈ R; o ∈ N+; a ≥ 0 and
{ct}t≥0 is the Markov process described above. Let Ho =
Q′Do with Do = diag(e−

2
o c1 , . . . , e−

2
o cl). Similar to Lemma

1 in [19], [21], we have the following necessary and sufficient
condition characterizing the first moment stability of (5).

Lemma 1: The first moment of the system (5) is stable, i.e.,
supt E {|zt|} <∞, if and only if λ2 < 1

ρ(Ho) .

B. Sojourn Times for Markov Lossy Process

Associated with the Markov lossy process {γt}t≥0, a
stochastic time sequence {Tk}k≥0 is introduced to denote the
time at which the transmission is successful. Without loss of
generality, let γ0 = r2 [18]. Then T0 = 0 and Tk, k ≥ 1 is
precisely defined by

T1 = inf{k : k ≥ 1, γk = 1},
T2 = inf{k : k ≥ T1, γk = 1},

...
...

Tk = inf{k : k ≥ Tk−1, γk = 1}. (6)
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By the ergodic property of the Markov process {γk}k≥0, Tk,
∀k ∈ N is finite almost everywhere (abbreviated as a.e.). Thus,
the integer valued sojourn time {T ∗k }k>0 which denotes the
time duration between two successive successful transmissions
is well-defined a.e., where

T ∗k = Tk − Tk−1 > 0. (7)

Moreover, we have the following characterization of the prob-
ability distribution of sojourn times {T ∗k }k>0.

Lemma 2 ( [15]): The sojourn times {T ∗k }k>0 are i.i.d..
Furthermore, the distribution of T ∗k is explicitly expressed as

Pr(T ∗k = i) =

{
1− p i = 1,

pq(1− q)i−2 i > 1.

III. FUNDAMENTAL LIMITATIONS

Let λ1, . . . , λd be the distinct unstable eigenvalues (if λi
is complex, its conjugate is excluded from this list) of A
with |λ1| ≥ |λ2| ≥ . . . ≥ |λd|, and let mi be the algebraic
multiplicity of λi. The real Jordan canonical form J of A
then has the block diagonal structure J = diag(J1, . . . , Jd) ∈
Rn×n [22], where the block Ji ∈ Rµi×µi and |det Ji| =
|λi|µi , with µi = mi if λi ∈ R, and µi = 2mi otherwise. It
is clear that the mean square stability of (1) is equivalent to
the mean square stability of

xt+1 = Jxt +OBut +Ovt, (8)

yt = CO−1xt + wt, (9)

for some invertible matrix O.
The following theorem characterizes a fundamental limi-

tation for mean square stabilization over Gaussian finite-state
Markov channels. The necessity is obtained via an information
theoretic argument as in [8], but with differences due to the
application of output feedback and the existence of process
and measurement noises.

Theorem 1: There exist sensing and controlling strategies
{ft(·)}t≥0, {ht(·)}t≥0, such that the system (1) can be mean
square stabilized over the Gaussian finite-state Markov channel
only if [|λ1|, . . . , |λd|]′ ∈ Rd satisfy(

d∏
i=1

|λi|aioi
) 2
o

<
1

ρ(Ho)
, (10)

for all oi ∈ {0, . . . ,mi}, i = 1, . . . , d with o =
∑d
i=1 aioi,

where ai = 1 if λi ∈ R and ai = 2 otherwise.
Proof: We use uppercase letters X,S,R,Γ to denote

random variables of the system state, the channel input, the
channel output and the channel fading. We use the lowercase
letters x, s, r, γ to denote their realizations. Following a similar
line of arguments as in [8], we can show that

Nγt(Xt+1|Rt) ≥ (detA)
2
n e−

2
n ctNγt−1(Xt|Rt−1), (11)

where Nγ(X|R) denotes the average conditional entropy
power of X given the events R = r and Γ = γ and averaged
only over R. In view of Proposition II.1 in [4], a necessary
condition to ensure the mean square stability of Xt is that
the first moment of Nγt(Xt+1|Rt) should converge to zero

asymptotically. Thus, the MJLS zk+1 = (detA)
2
n e−

2
n ctzk

should be stable in the first moment. Following Lemma 1,
a necessary condition to ensure the mean square stability can
be obtained as

(detA)
2
n <

1

ρ(Hn)
. (12)

Notice that each block Ji has an invariant real subspace
Aoi of dimension aioi, for any oi ∈ {0, . . . ,mi}. Consider
the subspace A formed by taking the product of the invariant
sub-spaces Aoi for each real Jordan block. The total dimen-
sion of A is

∑d
i=1 aioi and the real Jordan form for the

system matrix of the dynamics in the subspace A is JV

with |det JV | =
∏d
i=1 |λi|aioi . Since (1) is mean square

stabilizable, the dynamics in the subspace A is also mean
square stabilizable. Following a similar line of arguments as
in the derivation of (12), the fundamental limitation (10) can
be obtained.

Let δ =
σ2
ω

P+σ2
ω

. We can derive the necessity for control over
power constrained Markov lossy channels from Theorem 1
directly. Firstly, the following lemma is need, whose proof is
given in Appendix.

Lemma 3: Let Q be defined in (4); D = [ 1 0
0 δ ] with 0 <

q, p, δ < 1; λ ∈ R, |λ| ≥ 1 and T ∗k be defined in (7). The
following conditions are equivalent: (i) λ2ρ(Q′D) < 1, (ii)
E
{
λ2T∗k

}
δ < 1, (iii)

1− λ2(1− q) > 0, (13)

λ2δ

[
1 +

p(λ2 − 1)

1− λ2(1− q)

]
< 1. (14)

The fundamental limitation for control over power con-
strained Markov lossy channels is stated below.

Theorem 2: There exist sensing and controlling strategies
{ft(·)}t≥0, {ht(·)}t≥0, such that the system (1) can be mean
square stabilized over the power constrained Markov lossy
channel only if [|λ1|, . . . , |λd|]′ ∈ Rd satisfy

1−

(
d∏
i=1

|λi|aioi
) 2
o

(1− q) > 0, (15)

δ
1
o

(
d∏
i=1

|λi|aioi
) 2
o

1 +
p(
(∏d

i=1 |λi|aioi
) 2
o − 1)

1− (1− q)
(∏d

i=1 |λi|aioi
) 2
o

 < 1,

(16)

for all oi ∈ {0, . . . ,mi}, i = 1, . . . , d with o =
∑d
i=1 aioi.

Proof: Since

Ho = Q′Do =

[
1− q p
q 1− p

] [
1 0

0 δ
1
o

]
,

for power constrained Markov lossy channels, in view of
Theorem 1 and Lemma 3, the necessity can be obtained.

IV. MEAN SQUARE STABILIZATION OVER GAUSSIAN
FINITE-STATE MARKOV CHANNELS

In this section, we provide a sufficient stabilization
condition for control over Gaussian finite-state Markov



4

channels via the construction of observer, estimator, con-
troller, channel encoder, decoder and scheduler. The ob-
server/estimator/controller is reproduced from [19], [22],
which mimics the optimal estimation and control scheme
in LQG control [23]. The channel encoder/decoder/scheduler
design is borrowed from [8], which adopts a TDMA scheme
to transmit multiple sources over a scalar channel.

A. Communication Structure

The entire communication scheme is shown in Fig. 2. The
observer and estimator can be regarded as the source encoder
and decoder, which take the measurement signal yt to estimate
the system state x̂t. The channel encoder and decoder are
designed to reliably transmit source signals over the uncertain
channel. Since the observer/encoder is aware of the one-step
delayed channel fading and channel output via the feedback
link, it can thus simulate the decoder/estimator/controller to
obtain the estimated state x̂t and the control input ut.

yt

Observer

x̄t+1

et = x̄t − x̂t
Encoder

st
Channel

rt
Decoder

êt

Estimator

x̂t+1

Controller

ut

x̂t

Fig. 2: Communication Structure

B. Observer/Estimator/Controller Design

The Luenberger observer is designed as

x̄t+1 = Ax̄t +But − L(yt − Cx̄t), (17)

where x̄0 = 0 and L is selected such that A+LC is Hurwitz.
The estimator generates the estimate x̂t with

x̂t+1 = Ax̂t +Aêt +But, (18)

where x̂0 = 0 and êt is the output of the channel decoder. The
controller is given by

ut = Kx̂t, (19)

where K is selected such that A+BK is Hurwitz. With the
above observer, estimator and controller design, we have the
following result.

Lemma 4: If there exists a pair of channel encoder and
decoder, such that supt E

{
‖et‖2

}
< ∞ with et = x̄t − x̂t,

the system (1) is mean square stabilizable over the Gaussian
finite-state Markov channel.

Proof: In view of (1) and (17), we have

xt+1 − x̄t+1 = (A+ LC)(xt − x̄t) + vt + Lwt. (20)

Since L is selected such that A + LC is stable, we have
supt E

{
‖xt − x̄t‖2

}
<∞. From the observer dynamics (17)

and the controller (19), we have x̄t+1 = (A + BK)x̄t −
BK(x̄t− x̂t)−LC(xt− x̄t)−Lwt. Since A+BK is Hurwitz

and supt E
{
‖xt − x̄t‖2

}
< ∞, if supt E

{
‖et‖2

}
< ∞, we

have supt E
{
‖x̄t‖2

}
<∞. Therefore, we have

sup
t

E
{
‖xt‖2

}
= sup

t
E
{
‖xt − x̄t + x̄t‖2

}
≤ sup

t
E
{
‖xt − x̄t‖2

}
+ sup

t
E
{
‖x̄t‖2

}
<∞,

which implies that the original system (1) is mean square
stable. The proof is completed.

In view of the above lemma, we are now to design channel
encoder/decoder to ensure that supt E

{
‖et‖2

}
< ∞. The

dynamics for et is

et+1 = A(et − êt) + Φt, (21)

where Φt = −LC(xt − x̄t)− Lwt. From (20), we have that

xt − x̄t = (A+ LC)tx0 +

t−1∑
i=0

(A+ LC)t−1−i(vi + Lwi).

Since x0, {vt}t≥0, {wt}t≥0 are independent and with zero
mean and bounded variance, xt − x̄t and thus Φt are with
zero mean and bounded variance.

C. Encoder/Decoder/Scheduler Design

To transmit the n-dimensional vector et through the scalar
channel, the TDMA strategy is used. There are n en-
coder/decoder pairs to transmit the n sources {e1,t, . . . , en,t}
with ei,t being the i-th value of et and a scheduler to multiplex
the channel use. Suppose at time t, the i-th encoder/decoder
pair is scheduled to use the channel. The Encoder i first
generates a symbol si,t, which is a scaled version of ei,t
to satisfy the channel input power constraint, and transmits
it to the decoder through the communication channel. The
Decoder i then forms the minimal mean square error estimate
êi,t based on the channel output ri,t. The estimator maintains
an array êt = [ê1,t, . . . , ên,t]

′ that represents the estimate of
et, which is set to 0 at t = 0. When the information about
ei,t is transmitted, only êi,t is updated at the estimator side.
The channel encoder/decoder/scheduler structure is illustrated
in Fig. 3.

e1,t
Encoder 1

s1,t

e2,t
Encoder 2

s2,t

...
en,t

Encoder n
Scheduler

r1,t
Decoder 1

ê1,t

r2,t
Decoder 2

ê2,t

...
Decoder n

ên,t

Fig. 3: Channel encoder/decoder/scheduler structure

If at time t, the Encoder i is scheduled to use the channel,
then the encoder generates

si,0 = 0, si,t =

√
P

σ2
ei,t

ei,t, t ≥ 1, (22)

where σ2
ei,t represents the variance of ei,t. The Decoder i

satisfies
êi,t =

Eγt{ri,tei,t}
Eγt{r2

i,t}
ri,t. (23)
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It is clear from (21) and the designed communication scheme
that E {et} = 0 and E {êt} = 0.

Remark 2: The observer/estimator/controller design and the
encoder/decoder design are similar to those of [24], [25],
where there is a filter that obtains the best state estimate at the
transmitter side, and the transmitter sends only the innovation
obtained as the difference between the best transmitter side
state estimate and the best receiver side state estimate. The
estimator/controller design in [24], [25] is optimal for scalar
systems in terms of the LQ performance, while in this paper
only stability is concerned. However, our work provides non-
trivial extensions to vector systems.

The scheduling Algorithm 1 is designed, which adopts a
TDMA strategy and allocates a fixed transmission period
to each encoder/decoder pair, where τi, i = 1, . . . , n are
scheduler parameters to be specified later. We assume that both
the encoder and the decoder know the scheduling algorithm.
Since the switching among transmissions is only determined
by time, we do not need to consider the coordination among
encoders and decoders.

Algorithm 1: TDMA Scheduler for n-dimensional Sys-
tems

In the k-th round of transmissions
• The first encoder/decoder pair is scheduled to use

the channel for τ1 times.
• . . .
• The j-th encoder/decoder pair is scheduled to use

the channel for τj times.
• . . .
• The n-th encoder/decoder pair is scheduled to use

the channel for τn times.
• Repeat this process.

D. Sufficient Stabilization Results

Theorem 3: If
d∏
i=1

|λi|2µi <
1

ρ(H1)
, (24)

there exist τi, i = 1, . . . , n, such that the system (1) can be
mean square stabilized over the Gaussian finite-state Markov
channel with the proposed TDMA communication scheme.

In view of Lemma 4, if (21) is mean square stable, the sys-
tem (1) can be mean square stabilized over the Gaussian finite-
state Markov channel. Thus, the key in proving Theorem 3 is
to show that there exist τis such that (21) is mean square stable.
Moreover, with the designed TDMA communication scheme,
we can show that each subsystem in (21) is described by a

MJLS. If (24) holds, we have that |λi|
2
∑
j ln |λj |

ln |λi| ρ(H1) < 1,
for i = 1, . . . , n (for the case that λ1, . . . , λd are real and
mi = µi = 1). If τi is selected such that τi∑

j τj
= ln |λi|∑

j ln |λj | ,
the MJLS is stable, which further implies the mean square
stability of (21). Then the original system is mean square
stable. The detailed proof is provided as below.

Proof: Without loss of generality, we assume that
λ1, . . . , λd are real and mi = µi = 1. For other cases, the
theorem can be proved by combining the following analysis
with a similar line of arguments used in [26].

In the first step, we shall derive the dynamics for the mean
square value of ei,t. From (21), we obtain

ei,t+1 = λi(ei,t − êi,t) + Φi,t. (25)

Analogous to the analysis in [11], we can show that with the
encoder (22) and the decoder (23),

Eγt+1{e2
i,t+1} = λ2

i e
−2ctEγt{e2

i,t}+ E
{

Φ2
i,t

}
, (26)

if the i-th encoder/decoder pair is scheduled to use the channel
at time t. Let τ =

∑n
i=1 τi and ηi,kτ = E{e2

1,kτ |γkτ =
ri}Pr(γkτ = ri). Since from time kτ + 1 to kτ + τ1, the
first encoder/decoder pair is scheduled to use the channel from
Algorithm 1, we have that

ηj,kτ+1 = E
{
e2

1,kτ+1|γkτ+1 = rj
}

Pr(γkτ+1 = rj)

=

l∑
i=1

Pr(γkτ = ri|γkτ+1 = rj)Pr(γkτ+1 = rj)

× E
{
e2

1,kτ+1|γkτ+1 = rj , γkτ = ri
}

(a)
=

l∑
i=1

Pr(γkτ+1 = rj |γkτ = ri)Pr(γkτ = ri)

× E
{
e2

1,kτ+1|γkτ+1 = rj , γkτ = ri
}

(b)
=

l∑
i=1

qijPr(γkτ = ri)E
{
e2

1,kτ+1|γkτ = ri
}

(c)

≤
l∑
i=1

qijPr(γkτ = ri)
λ2

1

e2ci
E
{
e2

1,kτ |γkτ = ri
}

+ E
{

Φ2
1,kτ

}
=

l∑
i=1

λ2
1

e2ci
qijηi,kτ + E

{
Φ2

1,kτ

}
,

where (a) follows from the Bayes law; (b) is due to the
fact that e1,kτ+1 is independent with γkτ+1 and (c) arises
from (26). Let ηkτ = [η1,kτ , η2,kτ , . . . , ηl,kτ ]′, then we have
ηkτ+1 ≤ λ2

1Q
′D1ηkτ +1E

{
Φ2

1,kτ

}
, where 1 is a vector with

all elements to be one. With similar derivations we have that

ηkτ+τ1 ≤ λ
2τ1
1 Hτ1

1 ηkτ

+

τ1−1∑
i=0

(λ2
1H1)τ1−1−i1E

{
Φ2

1,kτ+i

}
. (27)

Since from the time kτ + τ1 + 1 to (k + 1)τ , there are
no scheduled transmissions for the first encoder/decoder pair,
similar to the derivation of (27), we have

η(k+1)τ ≤ λ
2(τ−τ1)
1 (Q′)τ−τ1ηkτ+τ1

+

τ−τ1−1∑
i=0

(λ2Q′)τ−τ1−1−i1E
{

Φ2
1,kτ+τ1+i

}
. (28)

Combining (27) and (28), we have that

η(k+1)τ ≤ λ2τ
1 (Q′)τ−τ1Hτ1

1 ηkτ + Ψkτ , (29)
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where

Ψkτ = λ
2(τ−τ1)
1 (Q′)τ−τ1

τ1−1∑
i=0

(λ2
1H1)τ1−1−i1E

{
Φ2

1,kτ+i

}
+

τ−τ1−1∑
i=0

(λ2Q′)τ−τ1−1−i1E
{

Φ2
1,kτ+τ1+i

}
and Ψkτ is bounded.

In the second step, we will show that if the sufficient
condition (24) is satisfied, there exist τis such that (29)
is mean square stable. If (24) holds, we have ln ρ(H1) +
2
∑
j ln |λj | < 0. Therefore, there exists ς > 0, such

that ln ρ(H1) + 2
∑
j ln |λj | + ς = 0, which also implies

2 ln |λi|+αi ln ρ(H1) = − ς
n < 0, with αi =

2 ln |λi|+ ς
n

2
∑
j ln |λj |+ς > 0

and
∑
i αi = 1. Thus, we have λ2

i ρ(H1)αi < 1 for all
i = 1, . . . , n. Let ι = mini(2logρ(H1)|λi| + αi) > 0. Since
for every αi ∈ R, there exists a rational sequence {βi,k}k≥0,
such that limk→∞ βi,k = αi, we have limk→∞

βi,k∑
j βj,k

=
αi∑
j αj

= αi. Therefore, for the given ι, there exists M ∈ N+,

such that | βi,M∑
j βj,M

− αi| < ι. Let ϑi =
∑
j βj,M

βi,M
. Then

ϑ−1
i > αi− ι ≥ −2logρ(H1)|λi|. Thus, we have λ2ϑi

i ρ(H1) <
1. In view of Lemma 5.6.10 in [27], there exists a norm
‖ · ‖ such that κi := ‖λ2ϑi

i H1‖ < 1. From the equivalence
of norms, we have that ‖ · ‖ ≤ ε‖ · ‖1 for some ε > 1.
Then τi ∈ N+ is selected to satisfy that τi > − logκi ε and
βi,M = τi

τ̄ for all i = 1, . . . , n and for some τ̄ . The existence
of such τis can always be guaranteed by firstly writing rational
numbers βi,M s into fractions and then reducing fractions to
a common denominator and finally scaling the numerators
and denominators simultaneously to obtain a sufficiently large
numerator τi which satisfies τi > − logκi ε. Then we have
from (29) that

‖η(k+1)τ‖ ≤ ‖(Q′)τ−τ1‖‖λ2τ
1 Hτ1

1 ‖‖ηkτ‖+ ‖Ψkτ‖
≤ κτ11 ‖(Q′)τ−τ1‖‖ηkτ‖+ ‖Ψkτ‖
≤κτ11 ε‖(Q′)τ−τ1‖1‖ηkτ‖+ ‖Ψkτ‖
≤ κτ11 ε‖ηkτ‖+ ‖Ψkτ‖.

Since κτ11 ε < 1, we know that ‖ηkτ‖ is bounded. Since
E
{
e2

1,kτ

}
=
∑l
i ηi,kτ , we further have that E

{
e2

1,kτ

}
is

bounded.
Similarly, we can also prove that supk E

{
e2
i,kτ

}
< ∞ for

all i = 2, . . . , n. Therefore, et is mean square bounded. In
view of Lemma 4, the closed-loop system is mean square
stable. The proof is completed.

Remark 3: Suppose qij = qj for i, j = 1, . . . , l, then
the Gaussian finite-state Markov channel degenerates to the
power constrained fading channel [8] with finite i.i.d. channel
states. The stabilization condition in Theorem 3 becomes∏d
i=1 |λi|2µi(

∑l
i=1 qi

σ2
ω

σ2
ω+r2iP

) < 1, which coincides with the
result in [8].

The sufficient condition is also necessary for scalar systems
as shown in the following corollary.

Corollary 1: Suppose A = λ1 with λ1 ∈ R and
|λ1| ≥ 1. There exist sensing and controlling strategies

{ft(·)}t≥0, {ht(·)}t≥0, such that the system (1) can be mean
square stabilized over the Gaussian finite-state Markov channel
if and only if λ2

1 <
1

ρ(H1) .
Generally, there exists a gap between the necessity (10)

and the sufficiency (24) for high dimensional systems. In the
next section, we will study power constrained Markov lossy
channels and derive improved results.

V. MEAN SQUARE STABILIZATION OVER POWER
CONSTRAINED MARKOV LOSSY CHANNELS

In this section, by utilizing the properties of the Markov
lossy process, we propose communication scheduling algo-
rithms for power constrained Markov lossy channels and show
that they can achieve a larger stabilization region than that
with the TDMA scheduler. We first start with two-dimensional
systems.

A. Two-dimensional Systems

The necessary and sufficient condition to ensure the mean
square stability for two-dimensional systems controlled over
power constrained Markov lossy channels is stated in the
following theorem.

Theorem 4: Suppose n = 2. There exist sensing and control-
ling strategies {ft(·)}t≥0, {ht(·)}t≥0, such that the system (1)
can be mean square stabilized over the power constrained
Markov lossy channel if and only if (15) and (16) hold.

For the case of two-dimensional systems with eigenvalues
of equal magnitude, the communication scheme designed
in Section V-B is shown to be optimal (in the sense that
it achieves the largest stabilization region indicated by the
necessary condition in Theorem 2); see Corollary 2. In
this subsection, we only provide the optimal communication
scheme for two-dimensional systems with eigenvalues having
different magnitudes, i.e., A =

[
λ1 0
0 λ2

]
with λ1, λ2 ∈ R and

|λ1| > |λ2| ≥ 1. In view of Theorem 4, we only need to prove
that the following conditions are sufficient

(1− q)λ2
1 < 1, (30)

δλ2
1

[
1 +

p(λ2
1 − 1)

1− (1− q)λ2
1

]
< 1, (31)

δ
1
2 |λ1λ2|

[
1 +

p(|λ1λ2| − 1)

1− (1− q)|λ1λ2|

]
< 1. (32)

1) Optimal Scheduler Design: The communication struc-
ture is designed similarly as in Sec. IV with the same
observer/estimator/controller design and the channel en-
coder/decoder design. The scheduling Algorithm 2 is then
proposed, where φ = 2 ln |λ1|−ln |λ2|

ln δ and τ1 is the scheduler
parameter to be specified later. Since the switching among
transmissions in Algorithm 2 relies on the channel state
information, which is known to the decoder and the encoder
via the channel feedback, we do not need to consider the
coordination among encoders and decoders. Algorithm 2 is
based on the optimal scheduling algorithm for control over
power constrained lossy channels [11], where it is shown
that such allocation of channel resources is optimal for the
stabilization of two-dimensional systems with i.i.d. channel
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states. Even though the channel state {γt}t≥0 is correlated
over time for the power constrained Markov lossy channel,
the sojourn time {T ∗k }k>0 is i.i.d.. We may study the channel
from the perspective of the i.i.d. sojourn time sequence and
expect that the Algorithm 2 is optimal as well.

Algorithm 2: Optimal Scheduler for Two-dimensional
Systems
In the k-th round,
• The first encoder/decoder pair is scheduled to use

the channel until the transmissions succeed for τ1
times. Denote the time period to achieve this object
as T 1

k .
• – If

T 1
k < −

τ1
φ
, (33)

the second encoder/decoder pair is scheduled to
use the channel until the transmissions succeed
for τ2,k times with

τ2,k > τ1 + (T 1
k + T 2

k )φ, (34)

where T 2
k denotes the minimal period of achiev-

ing this object.
– Otherwise, set T 2

k = 0 and do not conduct any
transmissions.

• Repeat.

To make notions clear, we plotted the scheduled transmis-
sions and the first round transmission in Fig. 4 and Fig. 5,
respectively, where the definitions of Tk, T ∗k , T

1
k , T

2
k and the

new symbols T̄k, Ťk are summarized in Table I. It is clear
from Algorithm 2 that T̄i and T̄j are i.i.d.; T 2

i is independent
of T 2

j for any i 6= j. Besides, we have T 1
1 = T ∗1 + . . .+ T ∗τ1 ,

T 2
1 = T ∗τ1+1 + . . .+ T ∗τ1+τ2,1 .

Tk, k ≥ 0
the time when the transmission is success-
ful as defined in (6)

T ∗k , k ≥ 1
time duration between two successive suc-
cessful transmissions as defined in (7)

T 1
k , k ≥ 1

the period to transmit the first en-
coder/decoder pair in the k-th round trans-
mission

T 2
k , k ≥ 1

the period to transmit the second en-
coder/decoder pair in the k-th round trans-
mission

T̄k, k ≥ 1
the total time to complete the k-th round
of transmissions, i.e., T̄k = T 1

k + T 2
k

Ťk, k ≥ 0
the time when k rounds of transmissions
are completed, i.e., Ťk =

∑k
j=1 T̄j

TABLE I: Lists of transmission related definitions

2) Scheduler Parameter Selection: If (30) holds, we have

E
{
λ

2T∗1
1

}
= λ2

1[1 +
p(λ2

1 − 1)

1− (1− q)λ2
1

] > 1.

T̄1

T1
1 T2

1

Ť0 = 0 Ť1
· · ·

T̄kŤk−1 Ťk

T1
k T2

k

· · · t

Fig. 4: Scheduled transmissions with Algorithm 2

t

Ť0

T∗1

T1

T∗2

T2

· · ·
T∗τ1

Tτ1

T1
1

T∗τ1+1

Tτ1+1

T∗τ1+2

Tτ1+2

· · ·
T∗τ1+τ2,1

T2
1

Tτ1+τ2,1

Fig. 5: The first round transmission with Algorithm 2

Since (1− q)|λ1λ2| < 1 from (30), if (32) holds, we have

δ
1
2E
{
|λ1λ2|T

∗
1

}
= δ

1
2 |λ1λ2|[1 +

p(|λ1λ2| − 1)

1− (1− q)|λ1λ2|
] < 1.

Since E{eθ+bT∗1 } with b = 2 ln |λ1| − φθ is increasing in θ;
when θ = 0, E{eθ+bT∗1 } = E{λ2T∗1

1 } > 1 and when θ =
1
2 ln δ, E{eθ+bT∗1 } = δ

1
2E{|λ1λ2|T

∗
1 } < 1, we know that there

exists θ∗ with 1
2 ln δ < θ∗ < 0, such that

E
{
eθ
∗+bT∗1

}
= 1. (35)

The scheduler parameter τ1 is then selected to satisfy

τ1 > max

−2 ln 2 + θ∗(1− φ)

ln δ − 2θ∗
,

− ln 2

ln
(
δλ2

1[1 +
p(λ2

1−1)

1−(1−q)λ2
1
]
)
 .

(36)
3) Sufficiency Proof of Theorem 4: Firstly, we can prove

that, if (31) holds and τ1 is selected to satisfy (36), we have
that

E
{
λ2T̄1

1 δτ1
}
< 1, E

{
λ2T̄1

2 δτ2,1
}
< 1. (37)

The proof follows the same steps as in the proof of Lemma 3
in [11]. Due to space limitations, we omit the proof for brevity.

Next, we will show that the randomly sampled sequence
E
{
e2

1,Ťk

}
, k ≥ 0 is bounded. Conditioned on the sequence

{γŤk−1
, γŤk−1+1, . . . , γŤk−1+T̄k

} and from (26), we have

E
{
e2

1,Ťk

}
= E

{
e2

1,Ťk−1+T̄k

}
=

T̄k−1∏
j=0

λ2
1δ
γŤk−1+jE

{
e2

1,Ťk−1

}

+

T̄k−1∑
i=0

T̄k−1∏
j=i+1

λ2
1δ
γŤk−1+jE

{
Φ2

1,Ťk−1+i

}

= λ2T̄k
1 δτ1E

{
e2

1,Ťk−1

}
+

T̄k−1∑
i=0

T̄k−1∏
j=i+1

λ2
1δ
γŤk−1+jE

{
Φ2

1,Ťk−1+i

}
(a)

≤ λ2T̄k
1 δτ1E

{
e2

1,Ťk−1

}
+

T̄k−1∑
i=0

λ
2(T̄k−i−1)
1 E

{
Φ2

1,Ťk−1+i

}
≤ λ2T̄k

1 δτ1E
{
e2

1,Ťk−1

}
+ sup

t
E
{

Φ2
1,t

} T̄k−1∑
i=0

λ
2(T̄k−i−1)
1
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≤ λ2T̄k
1 δτ1E

{
e2

1,Ťk−1

}
+ sup

t
E
{

Φ2
1,t

} λ2(T̄k−1)
1 − λ−2

1

1− λ−2
1

,

where (a) follows from the fact that δγk ≤ 1 for any k. Thus,
we have that

E
{
e2

1,Ťk

}
≤ E

{
λ2T̄k

1 δτ1
}
E
{
e2

1,Ťk−1

}
+ sup

t
E
{

Φ2
1,t

}
E

{
λ

2(T̄k−1)
1 − λ−2

1

1− λ−2
1

}
. (38)

Since {T̄k}k≥1 are i.i.d., we have E{λ2T̄k
1 δτ1} < 1 and

supt E{Φ2
1,t}E{

λ
2(T̄k−1)

1 −λ−2
1

1−λ−2
1

} is bounded from (37), then the

randomly sampled sequences E
{
e2

1,Ťk

}
, k ≥ 0 is bounded

from (38). Similarly, we can also prove that E
{
e2

2,Ťk

}
, k ≥ 0

is bounded.
For any t, there must exist k such that t ∈ [Ťk, Ťk+1]. Thus,

conditioned on the lossy process {γt}t≥0, we obtain that for
i = 1, 2,

E
{
e2
i,t

}
=

t−1∏
j=Ťk

λ2
i δ
γjE

{
e2
i,Ťk

}

+

t−Ťk−1∑
i=0

t−1∏
j=Ťk+i+1

λ2
i δ
γjE

{
Φ2
i,Ťk+i

}
≤ λ2(Ťk+1−Ťk−1)E

{
e2
i,Ťk

}
+ sup

t
E
{

Φ2
i,t

} λ2(Ťk+1−Ťk−1)
i − λ−2

i

1− λ−2
i

≤ λ2(T̄k−1)E
{
e2
i,Ťk

}
+ sup

t
E
{

Φ2
i,t

} λ2(T̄k−1)
i − λ−2

i

1− λ−2
i

.

Thus, we have

E
{
e2
i,t

}
≤ E

{
λ2(T̄k−1)

}
E
{
e2
i,Ťk

}
+

sup
t

E
{

Φ2
i,t

}
E

{
λ

2(T̄k−1)
i − λ−2

i

1− λ−2
i

}
.

Since E
{
λ2T̄k
i

}
and E

{
e2
i,Ťk

}
are bounded, we know that

E
{
e2
i,t

}
is bounded. In view of Lemma 4, the sufficiency is

proved. �

B. High-dimensional Systems

The key difficulty in stabilizing multi-dimensional systems
over fading channels is to optimally allocate channel resources
among different sub-dynamics. We can show that the de-
sired optimal allocation is determined by the magnitudes of
eigenvalues and the realization of the channel fading [8]. To
optimally schedule the current transmission, we need to know
the future fading realizations as shown in [8], which is not
available due to the casualty constraint. For two-dimensional
systems, we can adopt Algorithm 2 to overcome this problem,
which first allocates a constant amount of channel resources to
the first sub-dynamics and then optimally stops the transmis-
sions for the second sub-dynamics. But this method is not

applicable to three or higher dimensional systems since to
optimally stop the transmissions for the second or subsequent
sub-dynamics, we need the information of the channel fading
realizations from the future transmissions for all the sub-
dynamics, which is not possible due to the causal availabil-
ity of the channel state information. In this subsection, an
adaptive TDMA scheduling algorithm is proposed for high-
dimensional systems, which is adaptive to the lossy process
and outperforms the scheduling Algorithm 1 as shown later.
The adaptive TDMA scheduler is stated in Algorithm 3, where
τ1, . . . , τn are scheduler parameters to be specified later.

Algorithm 3: Adaptive TDMA Scheduler for n-
dimensional Systems

• The first encoder/decoder pair is scheduled to use
the channel, until the transmissions succeed for τ1
times.

• The second encoder/decoder pair is scheduled to use
the channel, until the transmissions succeed for τ2
times.

• . . .
• The n-th encoder/decoder pair is scheduled to use

the channel, until the transmissions succeed for τn
times.

• Repeat.

Let T ik denote the period for the i-th encoder/decoder pair
to achieve τi successful transmissions in the k-th round and
define T̄k, Ťk analogously as in Subsection V-A. It is clear
that T ik is independent with T jk , and T̄i and T̄j are i.i.d. for
any i 6= j. A sufficient stabilization result with Algorithm 3
is stated in the following theorem.

Theorem 5: There exist sensing and controlling strategies
{ft(·)}t≥0, {ht(·)}t≥0, such that the system (1) can be mean
square stabilized over the power constrained Markov lossy
channel, if there exist αi, i = 1, . . . , d with 0 < αi ≤ 1
and

∑d
i=1 αi = 1 such that

(1− q)|λ1|2 < 1, (39)

δ
αi
µi |λi|2[1 +

p(|λi|2 − 1)

1− (1− q)|λi|2
] < 1, (40)

for all i = 1, . . . , d.
Proof: Here we only consider the case that λ1, . . . , λd are

real and mi = µ1 = 1. We can easily extend the analysis to
other cases by combining the following analysis with similar
arguments used in [26]. In view of Lemma 3, the sufficient
condition in Theorem 5 is equivalent to the following condition

E
{
λ

2T∗1
i

}
δαi < 1, i = 1, . . . , n. (41)

Let ι = mini(logδ E
{
λ

2T∗1
i

}
+αi). For any αi, there exists

a rational sequence {βi,k}k≥0, such that limk→∞ βi,k = αi.
Then limk→∞

βi,k∑
j βj,k

= αi∑
j αj

= αi. Therefore, for the given

ι, there exists M ∈ N+, such that | βi,M∑
j βj,M

− αi| < ι for all
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i = 1, . . . , n. Thus, βi,M∑
j βj,M

> αi − ι ≥ − logδ E
{
λ

2T∗1
i

}
,

which implies

E
{
λ

2T∗1
i

}
δ

βi,M∑
j βj,M < 1, i = 1, . . . , n.

Since β1,M , . . . , βn,M are rational, there exist integers

τ1, . . . , τn, τ̄ such that βi,M = τi
τ̄ and E

{
λ

2T∗1
i

}
δ

τi∑
j τj < 1

for i = 1, . . . , n, which implies

E
{
λ2T̄1
i δτi

}
= E

{
λ

2T∗1
i

}τ1+...+τn
δτi < 1.

Similar to the proof of Theorem 4, we can then show that the
sampled sequence E

{
e2
i,Ťk

}
is bounded, and further E

{
e2
i,t

}
is bounded. In view of Lemma 4, the sufficiency is proved.

Remark 4: In view of Lemma 3, Theorem 5 can be equiv-
alently stated as: if there exist αis with 0 < αi ≤ 1 and∑d
i=1 αi = 1, such that

E
{
λ

2T∗1
i

} µi
αi
δ < 1, (42)

for i = 1, . . . , d, the system is mean square stabilizable.
Then the existence of αis in Theorem 5 can be determined
as follows. Let α∗i = −µi logδ E

{
λ

2T∗1
i

}
, which is the lower

bound for any feasible αi from (42). If
∑
i α
∗
i > 1, there

are no feasible αis. Otherwise, one admissible αi is given by
αi =

α∗i∑
j α
∗
j

.
Remark 5: Theorem 3 can be equivalently expressed as: if

there exist αis with 0 < αi ≤ 1 and
∑d
i=1 αi = 1, such that

λ
2µi
αi
i ρ(Q′D1) < 1, (43)

for i = 1, . . . , d, the system is mean square stabilizable.
For power constrained Markov lossy channels, in view of
Lemma 3, (43) is equivalent to

E
{
λ
µi
αi

2T∗1
i

}
δ < 1. (44)

Since E
{
λ

2T∗1
i

} µi
αi ≤ E

{
λ
µi
αi

2T∗1
i

}
from Jensen’s inequality,

any λi that satisfies (44), must also satisfy (42). Thus, the
adaptive TDMA scheduler outperforms the TDMA scheduler
in the sense that it can tolerate more unstable systems.

When all the strictly unstable eigenvalues have the same
magnitude, the sufficient condition in Theorem 5 coincides
with the necessary condition in Theorem 2, as shown in the
following corollary.

Corollary 2: Suppose |λ1| = · · · = |λdu | = λ̃ > 1 and
|λdu+1| = · · · = |λd| = 1 with 1 ≤ du ≤ d. There exist
encoding and decoding strategies {ft(·)}t≥0, {ht(·)}t≥0, such
that the system (1) can be mean square stabilized over the
power constrained Markov lossy channel if and only if

(1− q)λ̄2 < 1,

δ
1

µ1+...+µdu λ̄2[1 +
p(λ̄2 − 1)

1− (1− q)λ̄2
] < 1.

Remark 6: As an application of the derived theorems, we
have the following extensions.

• When p = 0, q = 1, the power constrained Markov lossy
channel degenerates to the AWGN channel, a necessary
and sufficient condition to ensure mean square stabiliz-
ability from Theorem 2 and Theorem 5 is

∑
i µi ln |λi| <

1
2 ln(1 + P

σ2
ω

), which coincides with the stabilizability
condition over AWGN channels in [3], [4].

• If p = 1 − q, we can obtain the stabilizability con-
dition over power constrained lossy channels [11]. We
can show that Theorem 2, Theorem 4 and Theorem 5
recover Lemma 1, Theorem 2 and Theorem 1 in [11],
respectively.

• For the power constrained Markov lossy channel, taking
the limit P → ∞, σ2

ω → 0, we obtain the stabilizability
condition for control over Markovian packet loss channel
from Theorem 2 and Theorem 5 as (1 − q)|λ1|2 < 1,
which recovers the results in [15], [28], [29]. Moreover,
if p = 1 − q, we can further recover the stabilization
condition for control over i.i.d. erasure channels as in
[5], [6].

C. Numerical Illustrations

For two-dimensional systems controlled over power con-
strained Markov lossy channels, suppose P = 3, σ2

ω = 1, the
regions for (ln |λ1|, ln |λ2|) indicated by the derived necessary
conditions and sufficient conditions are plotted in Fig. 6 under
different failure and recovery rates. We plot the necessary sta-
bilization region and sufficient stabilization regions achieved
with the optimal scheduler, the TDMA scheduler and the
adaptive TDMA scheduler for the case p = 0.3, q = 0.6.
For the cases of p = 0.6, q = 0.6 and p = 0.3, q = 0.9,
only the stabilization region indicated by the necessity and
sufficiency with the optimal scheduler is plotted. The other
sufficient stabilization regions are omitted for clarity but can
be plotted in a similarly way as in the case of p = 0.3, q = 0.6.

Necessity and Sufficiency with Optimal Scheduler

Sufficiency with Adaptive TDMA Scheduler

Sufficiency with TDMA Scheduler

when p=0.3, q=0.9

when p=0.3, q=0.6

when p=0.3, q=0.6

when p=0.3, q=0.6

Necessity and Sufficiency with Optimal Scheduler

Necessity and Sufficiency 

with Optimal Scheduler 

when p=0.6, q=0.6

λ1 = λ2

0.0 0.1 0.2 0.3 0.4

0.0

0.1

0.2

0.3

0.4

ln|λ1|

ln
|λ
2
|

Fig. 6: Stabilization regions for (ln |λ1|, ln |λ2|)
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For the given failure and recovery rate, it is clear that
the adaptive TDMA scheduler achieves a larger stabilization
region than the TDMA scheduler. When the two eigenvalues
are with equal magnitude, the adaptive TDMA scheduler is
optimal, which is implied in Corollary 2. Besides, the optimal
scheduling Algorithm 2 is tight as proved in Theorem 4. More-
over, when we increase the failure rate p or the recovery rate q,
the stabilization region is reduced or enlarged as expected due
to the change of the reliability of the communication channel.

VI. CONCLUSIONS

This paper studies the mean square stabilization problem
over Gaussian finite-state Markov channels. Necessary and
sufficient conditions are derived for general Gaussian finite-
state Markov channels. Improved sufficient conditions are
presented for power constrained Markov lossy channels. The
results imply that there exists a fundamental limitation for the
mean square stabilization of networked control over Gaussian
Markov channels. The proposed communication structure and
the scheduler design also shed light on practical networked
control system design. Further work will be devoted to reduc-
ing the gap between the necessary condition and the sufficient
condition for general high-dimensional systems.

APPENDIX

Proof: (ii)↔(iii): In view of the probability distribution
of T ∗k in Lemma 2, we have

E
{
λ2T∗k

}
=

∞∑
i=1

Pr(T ∗k = i)λ2i

= Pr(T ∗k = 1)λ2 +

∞∑
i=2

Pr(T ∗k = i)λ2i

= (1− p)λ2 +

∞∑
i=2

pq(1− q)i−2λ2i.

To guarantee the boundedness of E
{
λ2T∗k

}
, we should have

λ2(1− q) < 1. Then E
{
λ2T∗k

}
is

E
{
λ2T∗k

}
= (1− p)λ2 +

pq

(1− q)2

(1− q)2λ4

1− λ2(1− q)

= λ2[1 +
p(λ2 − 1)

1− λ2(1− q)
].

Summarizing the above results, we have

E
{
λ2T∗k

}
=

{
∞, if λ2(1− q) > 1

λ2
[
1 + p(λ2−1)

1−λ2(1−q)

]
, if λ2(1− q) < 1.

Then the equivalence of (ii) and (iii) is straightforward from
the expression of E

{
λ2T∗k

}
.

(i)→(iii): Let

H = Q′D =

[
1− q pδ
q (1− p)δ

]
.

Since H is a nonnegative matrix, in view of Corollary 8.1.20
in [27], 1− q ≤ ρ(H) < 1

λ2 , which is (13). Suppose the two
eigenvalues of H are ζ1 and ζ2, then ζ1 + ζ2 = tr(H), ζ1ζ2 =

det(H) with tr(H) = (1 − q) + (1 − p)δ and det(H) =
(1− p− q)δ. Since

tr(H)2 − 4 det(H) = ((1− q) + (1− p)δ)2 − 4(1− p− q)δ
= ((1− q)− (1− p)δ)2 + 4pqδ > 0,

we know that the spectral radius of H is

ρ(H) =
tr(H) +

√
tr(H)2 − 4 det(H)

2
.

Since λ2ρ(H) < 1, we have that λ2
√

tr(H)2 − 4 det(H) <
2 − λ2tr(H). Taking square of both sides, we obtain
λ4 det(H) − λ2tr(H) + 1 > 0. Substituting the expression
of tr(H) and det(H) into the above inequality, we have
λ4(1 − q − p)δ − λ2[(1 − q) + (1 − p)δ] + 1 > 0, which
implies λ2δ[(1−p)−λ2(1−p−q)] < 1−λ2(1−q). Dividing
both sides by 1− λ2(1− q), we can obtain (14).

(iii)→(i): We first note that λ2δ < 1 from (14). In view of
(13), we further have 2 − λ2tr(H) = 1 − λ2(1 − q) + 1 −
λ2δ(1−p) > 0. Then (iii)→(i) can be proved by reversing the
proof of (i)→(iii). The proof is completed.
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